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We investigate the relative phase between two weakly interacting 1D condensates of bosonic atoms

after suddenly switching on the tunnel coupling. The following phase dynamics is governed by the

quantum sine-Gordon equation. In the semiclassical limit of weak interactions, we observe the parametric

amplification of quantum fluctuations leading to the formation of breathers with a finite lifetime. The

typical lifetime and density of these ‘‘quasibreathers’’ are derived employing exact solutions of the

classical sine-Gordon equation. Both depend on the initial relative phase between the condensates, which

is considered as a tunable parameter.
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Dynamical instabilities can amplify spatial field fluctua-
tions drastically. If the instability provides sufficient en-
ergy, even quantum zero-point fluctuations can trigger the
formation of macroscopic field patterns. For instance, in
some cosmological scenarios of the inflationary stage of
the universe, following a slow-roll, a scalar inflaton field
performs oscillations around the minimum of the corre-
sponding inflaton potential. Thereby, resonant spatial fluc-
tuations are amplified parametrically. For a rather generic
class of potentials these can end in long-lived, local
concentrations of energy, so-called ‘‘oscillons’’ (e.g.,
Refs. [1–4]).

In this work, we argue that analogous nonequilibrium
phenomena should be observable in experiments with a
pair of weakly interacting quasi-1D clouds of cold, bosonic
atoms [5,6]. After suddenly turning on the tunnel coupling
between the condensates, the dynamics of the relative

phase field �̂ is governed by the integrable quantum
sine-Gordon model [7]

d2�̂

dt2
� d2�̂

dx2
þm2

�
sin��̂ ¼ 0; (1)

where the ‘‘mass’’ m depends on the tunnel amplitude,
such that mðtÞ ¼ m�ðtÞ for this quench. The phase has
been rescaled, and for weak interactions � � 1.

The sine-Gordon model (SGM) is one of the most
prominent prototypical models of low-dimensional
condensed-matter systems. Currently, quenches in the
SGM are under intense investigation (e.g., Refs. [8–13]).

Here, we propose that the spatially averaged value � of
the relative phase field is tuned to some value �0 right
before the quench [e.g., this might be achieved by slightly
tilting the transversal double-well potential confining the
BECs, cf. Fig. 1(a)]. The subsequent phase dynamics
can be directly observed in matter wave interference
experiments [5,6].

At short times, � will perform Josephson oscillations
[Fig. 1(b)] according to d2�=dt2 ¼ ���1m2 sin��.
However, these are linearly unstable [14,15] in the pres-
ence of inhomogeneous quantum fluctuations which are
parametrically amplified at certain wavelengths [Fig. 1(c)].
As we will show in this paper, due to this instability at
some later point the dynamics becomes fully nonlinear and
one observes the formation of sharply localized and oscil-
lating patterns in the phase-field [Fig. 1(c)]. It will be
shown below that they can be related to particular exact
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FIG. 1 (color online). (a) Proposed experimental protocol. A
single quasi-1D condensate is split and the global phase is tuned
to �0. Switching on the tunnel-coupling, the dynamics of the
relative phase obeys the quantum sine-Gordon equation. (b) At
short times, the global phase performs Josephson oscillations
(c) Single run of TWA (see main text) with ��0 ¼ 0:25�.
Spatial quantum fluctuations are amplified parametrically.
Eventually, the nonlinearity of the sine-Gordon equation kicks
in and quasibreathers (breathers with a finite lifetime) form. The
big (thin), vertical arrow indicates the Josephson (quasibreather)
oscillations.
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solutions of the classical SGM obtained from the Bäcklund
transformation (following Ref. [16]). These quasibreathers
(QBs) have a finite lifetime (in contrast to the well-known
breather solutions), and we find good evidence that a
quasiequilibrium steady state with a finite density of such
excitations develops at long times.

A similar pattern formation in an elongated condensate
seeded by quantum fluctuations was observed experimen-
tally [17]. After switching the positive scattering length to
small negative values, trains of bright solitons emerged.
It was argued [18] that these trains can be traced back to
phonon excitations becoming unstable after the interaction
quench; i.e., their frequencies become imaginary. Another
interesting example is [12] predicting the formation of
‘‘supersolitons’’ after a combined mass-interaction quench
in the SGM to the so-calledLuther-Emery point (�2 ¼ 4�).
At this special point, the system can be mapped to free
fermions [representing noninteracting (anti)solitons of the
classical SGM].

In contrast, the amplification observed in the present
case crucially relies on nonlinearities. For the considered
quench, due to the intrinsic instability, a simple approxi-
mation of the SGM in terms of noninteracting, massive
phonons is invalid, even though � � 1. Instead, we
employ the truncated Wigner-approximation (e.g.,
Ref. [19]) (TWA). The basic idea behind TWA is to
simulate classical field equations, but with quantum-
mechanical fluctuations as stochastic initial conditions.
In the limit of � ! 0, TWA is expected to become
reliable as it can be shown that � plays the role of an
effective Planck’s constant [19]. It describes correctly the
linear dynamics during the parametric amplification.
Once QBs form, occupation numbers are already large
(of the order �1=�2) such that a semiclassical description
(provided by TWA) should continue to remain valid.
The great advantage of TWA is that it serves snapshots
[Fig. 1(c)] of the phase field �ðx; tÞ run-by-run, which can
be compared directly to the experimental observations.

In the following, we introduce the model and demon-
strate that the proposed setup should be well within the
reach of present experiments. After a discussion of the
numerical findings obtained from TWA, we will introduce
the analytical quasibreather solutions of the classical
SGM. We demonstrate that these solutions are well suited
to explain the main physical features as predicted by
TWA. Eventually, we argue that a statistical analysis of
�ðx; tÞ, experimentally obtained at a single time t per run,
could reveal the distinctive signature of QBs.

Model.—It was argued [7] that on scales larger than
the condensate healing length �h, the dynamics of the

relative phase between condensates �̂ � ð�̂1 � �̂2Þ=
ffiffiffi
2

p
(and of the density field �̂, fulfilling ½�̂ðxÞ; �̂ðx0Þ� ¼
i�ðx� x0Þ) is governed by the quantum SGM. After

rescaling the fields (�̂ �
ffiffiffiffiffiffiffiffiffiffi
�=K

p
�̂ and �̂ �

ffiffiffiffiffiffiffiffiffiffi
K=�

p
�̂),

the Hamiltonian reads

Ĥ ¼ @vs

2

Z
dx½�̂2 þ ð@x�̂Þ2� �m2

�2

Z
dx cos��̂: (2)

The repulsive short-range interaction, characterized by the

Luttinger parameter K 2 ½1;1�, enters � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=K

p
. For

small interactions (K ! 1), K is connected to the inter-
action parameter � ¼ mBg=@

2�0 via K ¼ �=
ffiffiffiffi
�

p
[20]

(where g is the interaction strength, mB the mass of the
bosons and �0 the mean density). Furthermore, there are
the sound velocity vs ¼ vF=K (with vF ¼ @��0=mB),
and the effective mass m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2t?�0

p
�, where the tunnel-

amplitude t? between the condensates enters. The rele-
vant length scale in the SGM, determining the width of
breathers and solitons, is set by �x ¼ ffiffiffiffiffiffiffiffi

@vs

p
=m. The

Josephson frequency is !J ¼ m
ffiffiffiffiffiffiffiffiffiffi
vs=@

p
. In the following,

we set vs ¼ @ ¼ 1.
The sine-Gordon model should be a sound description

for �h=�x � 1 (�h � 1=�0
ffiffiffiffi
�

p
). In this limit, we expect

that a residual (integrability breaking) coupling to the
symmetric phase mode [21,22] does not qualitatively alter

the dynamics of �̂ on experimentally relevant time-scales
(this is supported also by recent experiments [23]).
Furthermore, (in contrast to Refs. [21,22], where m ¼ 0
during the evolution) decoherence of the massive excita-

tions in �̂ due to the gapless excitations in the symmetric
field is strongly suppressed due to energy and momentum
conservation.
Experimental realizability.—The condition �x � �h

translates into a lower bound for �: �2 � 4��1
0

ffiffiffiffiffiffiffiffiffiffiffiffi
t?mB

p
=@.

Within the present experimental setups, the condensate den-
sity can be widely tuned, e.g., in Ref. [24] the 1D density of
Rb87 atoms ranges from �0 ¼ ½Oð101Þ �Oð102Þ� �m�1.
For a transverse trap frequency !? ¼ 2�� 4 kHz, with
g ¼ 2@!?as and as ¼ 5:23� 10�9 m, one can realize K
up to �50; i.e., small values of the sine-Gordon parameter
� ¼ Oð10�1Þ are well achievable. Eventually, the tunnel
amplitude can be tuned up to t?=ð2�� @Þ ¼ Oð102Þ Hz
[5]. For large densities �0 ¼ 100 �m�1 the lower bound
on� isOð10�1Þ, aswell. In all numerical simulations,weuse
� ¼ 0:1. We conclude that after some fine-tuning of the
experimental parameters, the proposed setup should be
within reach.
Numerical results.—Before the quench, the phase field

� is given by the offset �0 plus the small zero-point
fluctuations of the free theory [Eq. (2) with m ¼ 0].
Within TWA, the fluctuations of the � and � modes are
initialized according to their Gaussian Wigner distribution
[19], omitting the q ¼ 0 mode black. All numerical simu-
lations are performed on a lattice. To avoid artifacts due to
the discreteness of the numerical implementation, we
chose the mass such that �x is of the order Oð1Þ in terms
of the lattice spacing.
This initial state should be experimentally achievable.

One should start from the ground state at strong tun-
nel coupling (very large m), where the relative phase
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�ðxÞ ¼ 0. During a slow linear ramp-down of the tunnel
amplitude, all modes �q�0 will follow their time-

dependent ground state. It can be shown that the global
phase � at the end of this process obeys �2h�2i �
1=�h�0, which remains small as long as the number of
bosons within the healing length is large. An additional
potential tilt will produce a fixed phase offset � ’ �0.
We will focus on rather small 0<��0 & 1. For
��0 ! �, in addition to breathers one observes the
formation of solitons. Finally, we note that this phase-
tuning becomes impossible for infinite systems. This is
due to the logarithmic divergence of phase fluctuations
with system size L in the massless ground state, i.e.,

�2h��̂2i � �2 lnL. However, these are largely sup-
pressed in the semiclassical limit � � 1. We always
choose the system size such that the initial overall
relative phase is well defined.

In Fig. 2, the phase field for a single run of TWA is
shown. At small times, the field is dominated by �ðtÞ
performing ordinary Josephson oscillations. At this point,
the inhomogeneous part ��ðx; tÞ of � ¼ �þ �� can be
treated as a small perturbation. The modes obey @2t �k þ
ðk2 þm2 cos½��ðtÞ�Þ�k ’ 0 for all k � 0; i.e., these are
phonons with a periodically modulated mass. Modes with
jkj 2 ½0; m sinj��0=2j� are parametrically amplified
yielding �kðtÞ � e�kt. The amplification rates �k for this
linear regime (here displayed for ��0 & 1) [see Fig. 3(a)]

2�k ’ jkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ð��0=2Þ � k2=m2

q
; (3)

were found in Ref. [14], neglecting the damping of the
driving �-mode. After some time, nonlinear interactions
between the amplified modes become important and lead
to the formation of sharply localized oscillating structures

(here denoted as quasibreathers), which constitute the main
phenomenon discussed in our paper. Once these localized
oscillations get out of phase with respect to the background
oscillations of �, their energy is depleted again. One
arrives at a steady-state, where QBs are randomly created
and decay, with a typical lifetime �	 and a mean spatial
distance �
 (cf. Fig. 2). All these statistical quantities cru-
cially depend on the initial value�0. It turns out that these
localized modulations in the stochastic phase field can be
connected to certain exact solutions of the SGM. These
solutions, to be discussed in the following, are standing
breathers riding on top of a homogeneous and oscillating
background. We will demonstrate that this set of solutions
is well suited to describe the numerical observations and
provides analytical insight into the dependence of �
 and �	
on �0.
Quasibreathers.—A Bäcklund transformation (see, for

instance, Ref. [16]) allows us to ‘‘add’’ (anti)solitons to a
given solution of the SGM, here taken to be the spatially
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FIG. 2 (color online). (a) Space-time plot of the phase field for
a single simulation run. (b) Spatial cut through the quasibreather
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blue line: filtering out irrelevant short wavelength fluctuations).
(c) Temporal cut through the emerging QB taken at its center.
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0 dx�. One observes the exponential amplification

of initial quantum fluctuations. Here, ��0 ¼ 0:3�.
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FIG. 3 (color online). (a) Phononic zero-point fluctuations are
amplified parametrically driven by the overall phase � perform-
ing Josephson oscillations. Corresponding amplification rate �k

of phonons with wave number k for ��0=� 2 0:05–0:4 accord-
ing to Eq. (3) (dashed line). Solid lines show the rate obtained
from the ‘‘multibreather’’ solution Eq. (5). (b) Plot of a (spatially
periodic) multibreather solution reducing to a driven phonon
with wave number k ¼ m��0=

ffiffiffi
8

p
for t=	k ! �1. Cut A

shows the parametric amplification of this phonon (B) driven
by the oscillating background (we plot ��k, subtracting this
background). It provides ‘‘seeds’’ for the formation of quasi-
breathers (C) with a lifetime 	k. Here, ��0 ¼ 0:3�. (c) Plot of a
single quasibreather (periodic in time) with ��0 ¼ 0:3� and
’ ¼ 1:02. (d) Mean frequency � � m� �� of a single quasi-

breather (j sin’j< j cos��0

2 j) depending on the amplitude of the

background oscillations and the parameter ’. For �0 ¼ 0, one
restores the unperturbed breather frequency � ¼ m sin’.
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homogeneous solution�ðtÞwith�ð0Þ¼�0 and
_�ð0Þ ¼ 0.

Adapting the approach ofRef. [16], we obtain quasibreather
solutions by adding a (standing) soliton and the correspond-
ing antisoliton to �. A standing SGM-breather is charac-
terized by its amplitude (e.g., Ref. [25]). The solutions here
depend in addition on the amplitude of the underlying
background oscillations �0 (furthermore, there is a minor
dependence on the precise value of the relative phase �0

between breather and background at t ¼ 0). They have
the form

�ðx; tÞ ¼ 4

�
arctan½Gðx; t;�0;�0; ’Þ� þ�ðtÞ: (4)

For �0 ¼ 0, the parameter ’ 2 ½0; �=2� determines the
unperturbed breather frequency m sin’ and max� ¼
��1ð2�� 4’Þ. An explicit expression for G and a discus-
sion of Eq. (4) are given in Ref. [26]. Here, we focus on the
most relevant features in the limit ��0 & 1.

The central observation is that by placing a breather on
top of the oscillating background, its amplitude becomes
time-dependent [see Figs. 3(b) and 3(c)]. The background
�ðtÞ amplifies the breather while the frequency of the latter
decreases. This is due to the fact that the effective curvature
of the cosine potential decreases for larger field ampli-
tudes. Eventually, both run out of phase and, subsequently,
the breather gets damped. The relative phase drift occurs
at a frequency

��ð’;�0Þ ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijcos2ð��0=2Þ � sin2’jp

cos’

1þ sin’
: (5)

As long as sin’< cosð��0=2Þ, � describes a single
breather whose amplitude is modulated with a period
2�=�� [Fig. 3(c)]. This constitutes a stable QB solution
of the SGM. As the background oscillates at frequency m,
one can understand � � m� �� as the mean frequency
of the quasibreather [Fig. 3(d)].

For sin’ ! cosð��0=2Þ, however, the period diverges.
In fact, it turns out that for sin’> cosð��0=2Þ, �
is periodic in space rather than in time [Fig. 3(b)]. It

describes a set of quasibreathers at distance 2�=k ¼
2�m�1jcos2ð��0=2Þ � sin2’j�1=2.

These multibreather solutions have remarkable proper-
ties. For t ! �1, they reduce to a phonon ��k with wave
number k, superimposed on the oscillating background. It
is amplified parametrically, yielding

��k / e�kt�ðtÞ coskx; (6)

where �ðtÞ is a periodic function and the amplification rate
�k � ��ð’ðkÞ;�0Þ. This rate is in agreement with the
results in Eq. (3) for small ��0. At later times, the char-
acteristic breather peaks form [Fig. 3(b)], exist during a
time set by 	k ¼ 4=�k, and decay again for t ! 1. Note
that �, therefore, describes the prototypical formation of
QBs out of fluctuations in a single mode �k.

Our numerical analysis shows (see below) that one can
infer the properties of typical QBs observed within the
stochastic TWA from these ideal multibreather solutions
�. In a given run, zero-point fluctuations in all modes are
present. However, in the weakly interacting limit (� � 1),
the parametric instability automatically filters out modes

with k � �k, where �k ’ m��0=
ffiffiffi
8

p
denotes the maximally

amplified mode. Thus, the typical distance between QBs is
roughly given by �
 ¼ 2�= �k. Although the strictly periodic
multibreather solution � is not directly observed, individ-
ual QBs are well described by � as long as their amplitude
is large enough compared to the noisy background. Typical
QBs decay after a lifetime �	 � 	 �k [cf. Fig. 3(b)]. When
their amplitude is depleted down to the noise level, the
exact solution ceases to be relevant. Then the background
oscillations initiate the amplification process again, lead-
ing to the formation of new QBs. This explains the ob-
served stochastic creation and annihilation of QBs at
large times ��kt � 1.
Statistical analysis.—These predictions agree well with

the statistical analysis of the quench within TWA. For every
run, we numerically track all QBs, showing their shape
�QBðxÞ at the time of maximum amplitude [Fig. 4(a)]. A

comparison of the mean QB shape h�QBi and � (with

k ¼ �k) shows excellent agreement. Note that no fit parame-
ter enters here.
Finally, Fig. 4(b) shows the equal-time correlation

function C��ðx; tÞ ¼ h�̂ðx; tÞ�̂ð0; tÞi � h�̂ð0; tÞi2 eval-

uated with TWA. For t= �	 > 1, it saturates, indicating that
the field enters a statistical steady state. One can find a
decent approximation [26] for C�� at large times t � �	,

assuming that �ðx; tÞ can be represented as a sum of
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independent QBs, at an average density 1= �
 �	 in the
(x, t)-plane:

C�� �
Z �
=2

� �
=2

dx0
�


Z �	=2

� �	=2

dt0
�	

~�ðx; x0; t0Þ~�ð0; x0; t0Þ; (7)

which describes the core part ofC�� fairly well (cf. Fig. 4).

Here, a single QB from the multibreather solution centered

at x0 enters: ~�ðx; x0; t0Þ ¼ �ð �
2 � jx� x0jÞ�ðx� x0; t0; �kÞ
(� denotes the heavy-side step function).

This correlation function is directly accessible in experi-
ments and should distinctively reveal the presence of QBs.
Moreover, one could simply perform a direct statistical
analysis of � [cf. Fig. 4(a)].

Summary.—We predict the formation of localized mod-
ulations in the relative phase field, after suddenly switching
on the tunnel coupling between a pair of quasi-1D con-
densates. These quasibreathers grow out of initial quantum
fluctuations, mimicking processes that are crucially impor-
tant in other areas like cosmology. They can be well
described by exact analytical solutions of the sine-
Gordon model. We derived their mean lifetime and density
after the system reaches a statistical steady state. These
predicitions are consistent with our numerical simulations.
An experimental realization, even with present setups,
seems to be within reach.
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