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We report experiments on lateral migration of bubbles in a two-dimensional foam sheared in a narrow-

gap Couette device. A larger bubble in an otherwise monodisperse bubble raft migrates toward the center

of the gap as long as the bubble size ratio and the shear rate are each above a threshold. The migration

speed is roughly two orders of magnitude higher than that of a single bubble, and increases with the shear

rate and the size ratio. The bubble also deforms much more than an isolated one at the same shear rate.

Modifying the Chan–Leal solution for the migration of a single submerged bubble or drop, we derive a

formula that successfully predicts all the migration trajectories recorded in the experiment. The threshold

for migration corresponds to the wall repulsion force overcoming the capillary force in the two-

dimensional foam. The size-differentiated bubble migration provides an explanation for previously

observed size segregation in sheared three-dimensional polydisperse foams.
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Foam is often studied as a model soft matter, as it exhibits
interestingmechanical behaviors such as jamming and yield-
ing [1,2]. Its rheology and hydrodynamics are intimately
coupled to its microstructure, i.e., the shape and spatial
organization of the bubbles [3,4]. A particularly intriguing
phenomenon is size-based segregation of bubbles in a poly-
disperse foam [5]. After shearing between rotating parallel
plates, smaller bubbles appear predominantly near the top
and bottom plates, while the larger ones are in the middle.
The cause is unclear, but one possibility is that the bubbles
have migrated across streamlines based on their size. In a
more recent experiment on a two-dimensional (2D) foam
under oscillatory shear [6], a bubble larger than its monodis-
perse neighbors migrates toward one of the four borders
confining the foam.This seems to contradict the observations
of Ref. [5]. More curiously, the migration does not distin-
guish between the flow direction and the direction of the
velocity gradient. These two studies hint at some rule gov-
erning lateral migration of bubbles in sheared foam, but little
is known at present.

In contrast, the lateral migration of particles and droplets
suspended in a liquid medium has been extensively studied
in the past (for example see Refs. [7–10]). A solid spherical
particle in a Stokes flow cannot migrate because the linear
system is time reversible. A droplet deforms under shear, and
this introduces a nonlinearity into the problem and enables
lateral migration. It has been shown that in low-Reynolds-
number Couette flows, droplets move away from the walls
toward the center of the gap [8,11,12]. This is commonly
interpreted as a wall repulsion: the rigid wall produces an
asymmetry in the velocity and pressure fields around the
drop, resulting in lateral migration force. Naturally, one
wonders if the same repulsion operates in sheared foam.

This Letter describes an experimental study of lateral
migration of bubbles in a 2D foam sheared steadily in a

narrow-gap Couette device. Into a monodisperse bubble
raft, we introduce a single bubble of different size and
investigate its migration. By correlating the migration
speed with the shear rate and the bubble size ratio, we
propose a hydrodynamic explanation for the migration
based on bubble deformation.
The experiments are carried out in a modified Couette

device consisting of a rotating sharp-edged inner disk of
radius R1 ¼ 9:3 cm and a stationary outer cylinder of inner
radius R2 ¼ 10 cm. Blowing nitrogen bubbles into a
surfactant-glycerin solution in water, we are able to produce
highly monodisperse bubble rafts that rest on the free sur-
face. The surfactant used is Sunlight dishwashing liquid
(Unilever), and the liquid bath is 10 cm deep. The bulk
surfactant concentration c ¼ 5 wt:% is 100 times the criti-
cal micelle concentration. Such a high concentration immo-
bilizes the bubble surface and prevents bubble bursting [13].
The liquid contains 80 wt.% glycerin, and has a viscosity
� ¼ 50� 1 mPa s, density � ¼ 1200 kg=m3, and surface
tension � ¼ 25� 2 mN=m. The area fraction of gas in the
foam, or foam quality, is around 85%. More details on the
experimental setup and material characterization can be
found in our earlier paper on bubble coalescence [13].
To study bubble migration, we insert a ‘‘test bubble’’ of

radius R into the bubble raft, R being different from the
background bubble radius r, and shear the foam by rotating
the inner cylinder. The trajectory of the test bubble is
recorded using three cameras from above. The rotational
speed of the inner cylinder � ranges from 0.05 to 10 rpm.
Using the shear rate _� ¼ �R1=d, d ¼ R2 � R1 being
the gap width, we define a bubble Reynolds number
Re ¼ � _�R2=� and a capillary number G ¼ � _�R=�. G
falls in the range 5� 10�5 � G � 1:7� 10�2, well below
the minimum needed for bubble breakup [14]. Indeed,
bubble breakup, coalescence, or burst never happened in
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our experiment. We will use both � and G in presenting
the results; they can be converted into each other through
G ¼ �RR1�=ð�dÞ.

Before presenting the results, let us exclude two geo-
metric factors from further consideration. First, for a
Newtonian fluid, the narrow gap would ensure an essen-
tially linear velocity profile. But a bubble raft tends to be
shear thinning and can exhibit a greater shear-rate gradient
across the gap [13,15]. Second, at high rotational speeds,
centripetal forces tend to induce an inward motion of
bubbles [13,16]. Both have been rendered negligible in
our experiment by using highly viscous suspending liquids.
The large viscosity suppresses the effective ‘‘slip’’ between
the bubble raft and the underlying liquid, and ensures a
linear bubble velocity profile. Besides, as long as we keep
the bubble Reynolds number Re< 0:1, the centripetal
force plays no role in the lateral migration. For the current
purpose, therefore, the Couette flow amounts to a simple
shear between parallel walls.

As a baseline, we first study the migration of a single
bubble floating on the free surface. It migrates to the center
of the gap from all initial positions. Typical trajectories are
shown in Fig. 1. The dimensionless drop position S is
scaled by the gap width d, with S ¼ 0 at the inner cylinder
and 1 at the outer cylinder. The symmetry between the
inward and outward trajectories confirms the uniformity of
the shear rate across the gap. This migration is reminiscent
of that of neutrally buoyant droplets suspended in a liquid
medium [8,12]. Thus we have compared the measured
trajectories with those predicted by the theory of Chan
and Leal [8]. Note that the prerequisites for the perturba-
tion theory, Re � 0, G � 1, and R � d, are all satisfied
by the experiment. In our geometry, the theory predicts a
bubble migration velocity at dimensionless position S

vmðSÞ ¼ 81

140

R2

d2
�G2

�
fðSÞ; (1)

where fðSÞ ¼ S�2 � ð1� SÞ�2 þ 2� 4S, and we have put
the bubble-to-liquid viscosity ratio to zero in the original
Chan-Leal formula. Integrating the above using the experi-
mental parameters produces the trajectories of Fig. 1. The
agreement between the measured and predicted trajectories
is very close. The formula was derived for a neutrally
buoyant drop inside a three-dimensional (3D) fluid while
our bubble ‘‘floats’’ on the liquid surface. In reality, surface
tension keeps 99% of the bubble volume below the undis-
turbed free surface, which is consistent with theoretical
calculations [17] (Fig. 1 inset). The viscous friction in the
thin meniscus atop the bubble may be larger than in a fully
3D geometry. But apparently the left-right asymmetry
dominates and the vertical dimension seems to matter little.
Thus, the Chan-Leal formula predicts the migration in our
geometry with no fitting parameter.

The main result of the experiment is the migration of a
larger bubble of radius R in an otherwise monodisperse
bubble raft of radius r. Generally the large bubble migrates

toward the center of the gap, and the migration speed
depends on the size ratio � ¼ R=r and the rotation rate
�. Figure 2 shows the migration trajectories for several �
and� values. During the migration, the large bubble shifts
from one row of bubbles to the next, spending a finite time
in each. This is indicated by the horizontal bars on some
trajectories, forming a staircase pattern. For clarity, the
bars are omitted on the other trajectories with only data
points plotted at the center of each step.
The following observations can be made. (i) There are a

threshold �0 for a fixed� and a threshold�0 for a fixed �,
below which no migration occurs. For the conditions of
Fig. 2(a), �0 lies between 1.43 and 1.54. In particular, a
bubble smaller than its neighbors, i.e., with � < 1, does not
migrate at all. In Fig. 2(b), �0 is between 2 and 2.5 rpm.
(ii) For sufficiently large � and �, a large bubble migrates
all the way to the center (S ¼ 0:5). Below these, the bubble
may migrate to an intermediate position between the wall
and the center. (iii) The migration speed increases with �
and�. (iv) The migration is much faster than if a bubble of
radius Rmigrates on a free surface without the bubble raft.
This can be seen by comparing Fig. 2 with Fig. 1; the
migration time differs by a factor of Oð102Þ.
All the above observations can be explained by a model

based on the deformation of the migrating bubble. Chan
and Leal [8] showed that the wall repulsion stems from the
left-right asymmetry in the flow around the bubble and the
concomitant asymmetric bubble shape. In our experiment,
a larger bubble protrudes outside its own row and forces the
surrounding bubbles to rearrange as they pass around it
[Fig. 3(a)]. Compared to fluid particles in a continuum, the
surrounding bubbles have a finite radius r and a capillary
pressure inside, and thus are much harder to displace and

FIG. 1. Migration trajectories of a single bubble (R ¼ 0:7 mm)
at � ¼ 7 rpm. The curves represent the Chan-Leal formula
[Eq. (1)]. The top inset illustrates the migration schematically
(not to scale) and the bottom one depicts the liquid meniscus
above the bubble calculated from the model of Ref. [17].
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deform. They continuously rub and bump into the sides of
the large bubble, imparting a force Fb on it. This force
is the counterpart of the liquid pressure and viscous force
in the single-bubble scenario, but much larger. A visible
consequence of Fb is the pronounced deformation of the
large bubble, much more than a single bubble of the same
size subject to the same shear rate [Fig. 3(b)]. A less visible
one, we surmise, is a strong wall repulsion arising from the
asymmetry in Fb from the two sides.

This idea can be made more precise by plotting the
bubble deformation as a function of the size ratio �
(Fig. 4). We define a bubble deformation parameter
D ¼ ðl� sÞ=ðlþ sÞ, l and s being the long and short axes
of the roughly elliptical deformed bubble, respectively.
According to Taylor’s celebrated formula [18], a single
bubble of negligible internal viscosity in a sheared fluid
should have D ¼ G. In the bubble raft, we find D / G as

well, and represent the data by D=G ¼ gð�Þ ¼
2:5�2 � 7�þ 11. Now we equate the larger deformation
in a bubble raft to that of a single bubble at a higher
‘‘effective capillary number’’ Ge:

Ge ¼ D ¼ G � gð�Þ: (2)

Plugging this into theChan-Leal formula [Eq. (1)] gives us a
modified Chan-Leal formula

vmðS; �Þ ¼ 81

140

R2

d2
�G2

�
fðSÞg2ð�Þ: (3)

After time integration, this formula predicts well all the
migration trajectories recorded in our 2D foam, over the
entire range of r, R, and � values. For clarity, only a few
representative curves are plotted in Fig. 2. Note that the
Oð10Þ deformation enhancement in Fig. 4 translates to the
Oð102Þ increase in the migration velocity. The success of
Eq. (3) confirms our hypothesis in the preceding paragraph.
As a corollary, a bubble of the same size as its neighbors or
smaller (� � 1) does not migrate because it does not jut out

FIG. 2. Bubble migration in a 2D foam. (a) Effect of the bubble
size ratio � at � ¼ 4 rpm. The bubble radii are (in mm):
ðr; RÞ ¼ ð0:35; 0:5Þ for � ¼ 1:43; (0.39, 0.6) for � ¼ 1:54;
(0.435, 0.7) for � ¼ 1:61, and (0.35, 1) for � ¼ 2:86. The solid
and dashed curves are predictions of Eq. (3) for � ¼ 1:61 and
2.86. (b) Effect of the rotational rate � for fixed bubble sizes
ðr; RÞ ¼ ð0:35; 0:7Þ mm. The curves are predictions of Eq. (3) for
� ¼ 3 and 7 rpm.

FIG. 3. Bubble deformation in different environments at
� ¼ 7 rpm. The large bubble (R ¼ 0:7 mm) in (a) deforms
much more in a foam of smaller bubbles (r ¼ 0:35 mm) than
alone in (b). (c) A smaller bubble (R ¼ 0:4 mm) is shielded by
its neighbors (r ¼ 0:58 mm).

FIG. 4. Deformation parameter of a larger bubble in a 2D foam
as a function of the bubble size ratio �. The error bars indicate
the variation among seven shear rates tested, and the curve is a
quadratic fit to the data.
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of its own row [Fig. 3(c)]. Thus, it is not subject to the
‘‘bumping force’’ Fb.

Finally, we examine the thresholds �0 and�0 for lateral
migration. When a monodisperse 2D foam is sheared, the
bubbles typically move in streamwise rows past one an-
other. For a larger bubble (radius R) to migrate laterally, it
must squeeze into the next row of bubbles (radius r). The
wall repulsion force Fw driving the migration, therefore,
must exceed a threshold in order to deform the bubbles of
the next row to create the gap. Because these bubbles in turn
interact with multiple moving and changing neighbors on
the other side, it is difficult to posit a precise force balance
from which to calculate the threshold. As an estimation, we
take the resistance to migration to be on the same order of
magnitude as the capillary force between bubbles in the
row: Fc ¼ ð�=rÞ�a2, where a is the radius of the thin film
between neighboring bubbles in a 2D foam. For the foam
quality used here, a shows a normal distribution among the
bubble pairs, with a mean of a ¼ 0:2r [13], which will be
used below. On the other hand, the wall repulsion can be
estimated from the Stokes formula using the migration
velocity of Eq. (3): Fw ¼ 6��vmR. We use the Stokes
formula as opposed to the Hadamard formula because the
bubble surface is immobilized by the high surfactant con-
centration [13]. Now the ratio between these two forces is

� ¼ Fw

Fc

¼ 243

70

R3r

a2d2
G2fg2: (4)

Note that fðSÞ gives the wall repulsion at position S. In
particular, using the largest Fw for the first row next to the
wall gives us the ratio�1. We argue that a�1 value ofOð1Þ
gives the threshold for lateralmigration of the larger bubble.

Figure 5 plots�1 for all the � and� values tested in our
experiments. The experimental conditions giving rise to
lateral migration are indicated by filled and half-filled
symbols, the latter for partial migration to positions be-
tween the wall and the center. The nonmigrating conditions
are shown by hollow symbols. These two groups are almost
perfectly separated by�1 ¼ 0:4, thus validating Eq. (4) as
an approximation for the threshold. For lower�, three data
points fall on the wrong side of the line; the experiment
may have been more susceptible to external disturbances in
these cases. Note that the thresholds reflect the graininess
of the bubble raft and have no counterpart in the Chan-Leal
theory.
To conclude, we have discovered a size-differentiated

lateral migration in sheared 2D foam, and constructed a
model based on the Chan-Leal theory to account for the
observations. The mechanism offers a potential explana-
tion for the size-based segregation in sheared 3D polydis-
perse foam [5].
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