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A.P. 70-543, México Distrito Federal 04510, Mexico
3Instituto de Astronomı́a, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria,
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We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find

configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is

small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and

axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these

results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination

of those long-lived configurations.
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Introduction.—It has been known for some time that a
Schwarzschild black hole (BH) cannot support a nontrivial
scalar field (SF) distribution; i.e., such a hole does not
admit scalar hair [1,2]. However, the no-hair theorems do
not exclude the existence of dynamical solutions that decay
very slowly in time. In a recent work [3] we found regular
SF configurations surrounding a Schwarzschild BH that
can survive for relatively long times, and conjectured that,
for a certain range of values of the SF and BH masses, such
SF configurations could survive in the vicinity of the BH
for cosmological time scales. Here we show that this is
indeed what happens, and that such distributions arise from
the evolution of fairly arbitrary initial configurations. Our
results give support to the idea that the dark matter halos
could be described by a coherent scalar excitation [4,5]
(see Refs. [6,7] for papers with a similar motivation), and
to the possibility of nontrivial axion distributions surround-
ing primordial BHs [8].

Three types of resonances.—The dynamics of a SF
propagating on a Schwarzschild background are described
by the Klein-Gordon equation
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with VðrÞ an effective potential given by
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Here M is the BH mass, ‘ the angular momentum number
(we decompose the field in spherical harmonics), � the
mass of the SF (in units for which G ¼ c ¼ @ ¼ 1), and r�
(�1< r� <þ1) the radial ‘‘tortoise’’ coordinate, re-
lated to the Schwarzschild radial coordinate r (r > 2M)

by r� ¼ rþ 2M lnðr=2M� 1Þ. As discussed in detail in
Ref. [3] (see also Ref. [9]), for each ‘ � 0 and M�<
M�critð‘Þ, V describes a potential well which is enclosed
between a barrier close to the BH, and the asymptotic
positive value �2 of the potential at infinity.
The stationary solutions of Eq. (1) are characterized by a

time dependency of the form ei!t with a real frequency !.
Such solutions behave as a combination of ingoing and
outgoing waves to the left of the potential barrier, close to
the horizon, and we require them to decay exponentially to
zero at spatial infinity. There is a continuous spectrum of
such solutions for !2 <�2. Furthermore, as we have
shown in Ref. [3], for ! lying in the region Vmin <!2 <
�2, with Vmin the local minimum of the potential, there is a
discrete set of such frequencies for which the amplitude
inside the potential well takes very large values when
compared with the amplitude close to the horizon. We
call these modes the stationary resonances, and the region
Vmin <!2 <�2 the resonance band.
If one imposes the condition of no waves coming from

the region close to the horizon, while keeping the require-
ment of exponential decay at spatial infinity, it turns out
that Eq. (1) is only satisfied for a discrete set of complex
frequencies. These solutions have been called quasireso-
nances in the literature [10] (see also Ref. [11] for a
previous study of such solutions).
Both the stationary resonances and quasiresonances are

in fact nonphysical solutions. First, as mentioned above, all
purely stationary solutions, i.e., those with real !, require
waves to move outward from the horizon region to com-
pensate for the waves that tunnel out through the barrier
and move toward the horizon (as otherwise the situation
would not be stationary). Imposing the condition of no
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waves coming out from the horizon clearly improves the
situation at the cost of introducing complex valued fre-
quencies !. This makes sense physically since now the
solutions must decay in time as the waves tunnel out of the
potential well and fall toward the BH, with this decay
represented by the imaginary part of the frequency.
Nevertheless, it turns out that such solutions are still non-
physical, as one can show that the energy density diverges
at the horizon for both types of solutions.

There is yet a third class of resonant solutions we will
consider. In Ref. [3] we performed numerical evolutions of
regular initial data that have not such a divergence of energy
density at the horizon, and found damped oscillating solu-
tions that remain surrounding the BH for long times. These
solutions have a frequency equal (within the numerical
error) to that of the stationary resonances. We call these
solutions dynamical resonances. We will show that the real
part of the frequency of the quasiresonant modes coincides
with the frequency of oscillation of the stationary and
dynamical resonances, and that the imaginary part coin-
cides with the decay rate of the dynamical resonances. This
is a nontrivial result since, after all, the dynamical solutions
are in some sense ‘‘infinitely different’’ to both the sta-
tionary resonances and the quasiresonances because they
are regular solutions with finite energy. This is similar to the
case of the quasinormal modes of BHs, which also diverge
at the horizon, but nevertheless physical excitations behave
as combinations of them locally at late times.

Toy model.—In order to illustrate how the different
resonant modes arise and are related to each other, we first
consider a simple toy model in which the potential V in
Eq. (1b) is replaced by

UðxÞ ¼ A�ðxÞ þ�2�ðx� aÞ; x :¼ r�; (2)

with A and a positive constants. That is, we have a poten-
tial well enclosed between the � barrier and a step function
where U jumps from zero to its asymptotic value �2. For
M� � 1 and ‘ � 1 the minimum of the potential well of
the physical potential V is located at rmin ¼ ‘ð‘þ 1Þ�
ðM�2Þ�1½1þOðM�Þ2�, and the strength of its barrier
is

Rr�min�1 Vdr� ¼ ½6‘ð‘þ 1Þ þ 1�ð4MÞ�1½1þOðM�Þ2�.
Therefore, we require the dimensionless parameters � :¼
2�=A and p :¼ ða�Þ�1 to scale likeM� in our toy model
potential U. In the analysis below we prove that for fixed
p < 1=� and small enough values of �, the potential U
gives rise to a discrete set of stationary and quasiresonant
frequencies whose real parts agree with each other.

The resonant modes for the potential U have the form

�ðt; xÞ ¼ ei!t �

8>><
>>:
�ei!x þ �e�i!x; x < 0;

�ei!x þ �e�i!x; 0< x< a;

e�
ffiffiffiffiffiffiffiffiffiffiffiffi
�2�!2

p
x; x > a;

(3)

with! a complex frequency.We require! =2 ð�1;��� [
½�;1Þ, which guarantees that Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �!2

p
� 0, and

therefore we can choose the sign of the square root such
that its real part is positive, leading to exponential decay for
x > a, as required. The constants �, �, �, and � are deter-
mined by the matching conditions at x ¼ 0 and x ¼ a
which consist in the continuity of � and its first spatial
derivative�0 at x ¼ a and the continuity of� and the jump
condition �0ðt; 0þÞ ��0ðt; 0�Þ ¼ A�ðt; 0Þ at x ¼ 0 .
For the stationary resonances ! is real and our restric-

tions imply! 2 ð��;�Þ. SinceU is real, it follows in this
case that � ¼ ��, � ¼ ��, and the ratio between the am-
plitudes of the solution for x < 0 and the one inside thewell
is 	ð!Þ ¼ j�j=j�j. The resonance frequencies are the ones
that minimize this ratio. For the quasiresonances, in turn,
the condition of no waves coming from the horizon implies
that� ¼ 0, which can only occur for a nontrivial imaginary
part of !. In terms of the quantities � and p defined below
Eq. (2), and the complex angle ’ lying inside the strip
��=2< Reð’Þ<�=2 defined by! ¼ � sin’, the condi-
tion � ¼ 0 reads

Fpð�; ’Þ :¼ 1þ i� sin’� e�2i’�ð2i=pÞ sin’ ¼ 0; (4)

while the ratio of interior and exterior solutions in the sta-
tionary case is

	ð!Þ ¼ 1

�

jFpð�; ’Þj
sin’

: (5)

As we prove now there exists, for each p < 1=� and small
enough �, a finite family ’nð�Þ of solutions of Eq. (4) with
the following properties: they depend smoothly on �, their
imaginary parts decay like�2, and their real parts agreewith
the local minima of 	ð!Þ. This shows the existence of
quasiresonant modes for the toy model potential U whose
frequencies are related to those of the stationary resonant
modes through their real parts.
In order to show this we consider first the limit

� ¼ 0, in which case Eq. (4) yields real solutions ’ð0Þ
n 2

ð��=2; �=2Þ satisfying sin’ð0Þ
n ¼ pðn�� ’ð0Þ

n Þ, with n ¼
1; 2; 3; . . . . There are a finite number of solutions when
p < 1=�. For p � 1=� the fundamental solution is ap-

proximately ’ð0Þ
1 � p�. In order to extend these solutions

for small� > 0we invoke the implicit function theorem and
observe that the functionFpð�;’Þ is linear in� and analytic

in ’. Furthermore,
@Fp

@’ ð0; ’ð0Þ
n Þ ¼ 2ið1þ p�1 cos’ð0Þ

n Þ � 0

since ��=2<’ð0Þ
n < �=2. Therefore, there exists for

small enough � a unique smooth solution curve ’nð�Þ
satisfying Fp½�;’nð�Þ� ¼ 0 and ’nð0Þ ¼ ’ð0Þ

n . A Taylor

expansion reveals that the corresponding complex frequen-
cies !nð�Þ ¼ � sin½’nð�Þ� have the form

Re½!nð�Þ� ¼ � sin’ð0Þ
n

�
1� �

qn
þ 


q2n
�2 þOð�3Þ

�
; (6a)

Im½!nð�Þ� ¼ �

2

sin2’ð0Þ
n

qn
�2 þOð�3Þ; (6b)
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where we have defined qn :¼ 2ðcos�1’ð0Þ
n þ p�1Þ and


 :¼ 1� q�1
n sin2’ð0Þ

n =cos3’ð0Þ
n . Furthermore, one can ver-

ify that the local minima of the function 	ð!Þ given in
Eq. (5), describing the stationary resonances, have precisely
the expansion given in Eq. (6a). Therefore, up to second
order in �, the frequencies of the stationary resonances
agree with the real part of the quasiresonant frequencies.

Since both parameters � and p scale like M� in our
model potential, it follows that forM� � 1 the imaginary
part of M!n scales like ðM�Þ6. This explains, at least
qualitatively, why the quasiresonant modes are associated
with such large time scales whenM� � 1.

It is also possible to relate the quasiresonant frequencies
!n to the dynamical resonances by representing the solu-
tions of Eq. (1) as an inverse Laplace integral. This calcu-
lation will be presented elsewhere.

Frequency comparison and characteristic times.—For
the physical potential, Eq. (1b), the quasiresonant modes
can be obtained semianalytically in several ways, the
most common are the continued fraction method intro-
duced by Leaver [12], and the WKB approach [13] (see
Refs. [14–17] for details). An analytic expression valid for
small values of the combination M� was obtained by
Detweiler in Ref. [11]. The stationary and dynamical
modes were previously considered in Ref. [3]. In this
section we show that the oscillations of the dynamical
resonances have frequencies equal (up to numerical error)
to the real part of the frequencies of the quasiresonant
modes, while the decay rates are equal to the imaginary
part of such frequencies (see Fig. 1). We also show that the
imaginary part of the quasiresonant frequencies calculated
by means of Leaver’s method has the limit behavior pre-
dicted by Detweiler. Hence, we can use the Detweiler
expressions to determine the decay rate of the dynamical
resonances with very small values ofM�, which cannot be
reached with the other two methods.

Leaver’s semianalytical approach [12] assumes a har-
monic time dependence for the SF, �ðt; rÞ ¼ c ðrÞei!t,
with ! the complex quasiresonant frequency, and

proposes a power series expansion for the radial function
c ðrÞ of the form

c ¼ ~c
X1
n¼0

an

�
1� 2M

r

�
n
; (7)

where, following Ref. [18], we define ~c :¼
e��rrð�2M�þM�2=�Þð1� 2M=rÞ�2iM!. This guarantees

that close to the horizon c � ei!r� , whereas at spatial

infinity c � e��r�rM�2=�, with � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �!2

p
and the

sign convention for the square root as explained in the
previous section. Notice however that our boundary con-
ditions are different than those in Ref. [18].
In Fig. 1 we plot the imaginary part of the frequency of

the first quasiresonant mode (the one with the lower value
of ReðM!Þ) for the cases ‘ ¼ 0, 1 and different values of
M�. We find that the real part of the frequencies obtained
corresponds to the frequencies at which the SF oscillates in
a dynamical scenario [3]. Furthermore, we also find that
the imaginary part of the frequencies (dots in Fig. 1)
corresponds to the decay rate of the field in the numerical
evolutions (empty circles in Fig. 1).
In the numerical evolutions we were not able to evolve

the configurations for small values ofM�, both because of
the propagation of the errors in the numerical approxima-
tion, and because the time required for such evolutions
becomes prohibitive. Even though Leaver’s method allows
us to obtain results for parameter values that could not be
reached with the numerical evolutions, numerical roundoff
errors make it still prohibitive to obtain accurately very
small values for the imaginary part of the quasiresonant
frequencies.
In Ref. [11] analytic expressions for the spectrum of

quasiresonant modes were found in the limitM� � 1, for
values of ‘ � 1. For ‘ ¼ 1, the imaginary part of the
frequency for the first quasiresonant mode in this limit is
given by ImðM!Þ ¼ ðM�Þ10=6. Strictly speaking, the ex-
pressions given in Ref. [11] may not apply for the case with
‘ ¼ 0. However, if we nevertheless use them in that case
we find ImðM!Þ ¼ 16ðM�Þ6. We have calculated the
quasiresonant mode frequencies using Leaver’s method
up to the smallest values of M� allowed by the roundoff
errors, and we have found that the imaginary part of such
frequencies matches the Detweiler approximations (within
errors) at small values of M� (see Fig. 1). This result
allows us to conclude that, for small values of M�, the
decay time of the dynamical resonances should correspond
to the one predicted by Detweiler in Ref. [11].
Since the decay rate of the dynamical resonances is

related to the imaginary part of the quasiresonant frequen-
cies, then its half-life time is inversely proportional to
ImðM!Þ. In particular we can find BH and SF masses
such that t1=2 � 1010 years and larger for the cases ‘ ¼ 0,
1 previously mentioned. Those results are shown in Fig. 2.
There are two distinct regions of the parameter space of
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FIG. 1 (color online). The imaginary part of the frequency for
the first quasiresonant mode obtained using Leaver’s method is
shown as a function of M� for the cases ‘ ¼ 0, 1.
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physical interest for which the configurations live longer
than the age of the Universe: (i) a SF mass smaller than
1 eV and BH mass smaller than 10�17M	, consistent with
primordial BHs with an axion distribution [8]; and (ii) an
ultralight (fuzzy) SF [19–21] with a mass smaller than
10�22 eV and a supermassive BH with a mass smaller
than 5� 1010M	, as could be the case for a dark matter
halo [4,5] surrounding a BH at a Galactic center.

Evolution of arbitrary configurations.—In this section
we study the long-term numerical evolution of SF distri-
butions that are initially surrounding a Schwarzschild BH.
We show that at late times, after some of the SF falls into
the BH and some escapes to infinity, the remaining SF
consists of a superposition of the dynamical resonances,
which, for practical purposes, can be described in terms of
the quasiresonant modes. Remarkably, we see that this
holds even for pretty arbitrary initial data. Note that the
calculations in this section are identical to those in Ref. [3],
but with the crucial difference that here they are performed
on arbitrary initial data (as opposed to initial data obtained
from stationary resonances), hence leading to new, much
stronger results.

In order to test the evolution of a variety of SF distribu-
tions, we construct a two-parameter family of initial data,
of the form

u0ðrÞ ¼
(
Nðr� R1Þ4ðr� R2Þ4 for R1 
 r 
 R2

0 otherwise
; (8)

with the normalization N ¼ ½2=ðR1 � R2Þ�8. The parame-
ters R1 and R2 are chosen in order to set distributions at
t ¼ 0 with different ‘‘locations’’ and ‘‘sizes.’’ The initial
value of the time derivative, _ujt¼0, is constructed as

_ujt¼0 ¼ �f

�t

��������t¼0
; fðt; rÞ :¼ u0ðr� vtÞ; (9)

where v is a free parameter that has no significant effect on
the results presented here, and for the majority of configu-
rations studied is simply set to zero. The evolution equation
is solved numerically, as described in Ref. [22].

As expected, during the initial stages of the evolution
some of the SF accretes into the BH, while some is radiated
away, both with rates that depend greatly on the initial data
chosen, and can be very large in some cases. However, at
late times, all evolutions show a similar steady behavior
with slow accretion into the BH. Similar results are ob-
tained when studying the long-term evolution of a variety
of configurations, some of them very different in size and
spatial distribution—although all distributions studied here
are quite ‘‘wide’’ when compared to the BH size.
One can gain some understanding of this behavior by

conducting a spectral analysis as follows. We perform a
(discrete) Fourier transform in time, F ½�ðt; rjÞ�ð!Þ, of the
SF at several (about 20) sample points rj, then take the

average to obtain the spectrum F ½�ðtÞ�ð!Þ. For brevity,
we present here results corresponding to only two repre-
sentative examples. They correspond to initial data with
R1¼100M, R2¼200M, and R1¼�1000M, R2¼1000M.
In both cases �M ¼ 0:3, ‘ ¼ 1, and v ¼ 0. The spectra
are shown in Fig. 3.
For comparison, we have indicated in the figure the first

resonance frequencies (vertical lines), as obtained in
Ref. [3]. One can clearly see peaks that coincide with
each resonant frequency. These results seem to indicate
that, at late times, even quite generic SF distributions
evolve as a combination of the resonant modes, which, as
we have shown, can last for cosmological time scales.
This work was supported in part by CONACyT Grants

Nos. 82787 and 167335, DGAPA-UNAM through Grant
No. IN115311, and SNI-México. J. C. D. and M.M. ac-
knowledge DGAPA-UNAM for postdoctoral grants. O. S.
was also supported byGrantNo.CIC4.19 fromUniversidad
Michoacana. This work is part of the ‘‘Instituto Avanzado
de Cosmologı́a’’ collaboration.
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