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It is well known that increasing the nonlinearity due to repulsive atomic interactions in a double-well

Bose-Einstein condensate suppresses quantum tunneling between the two sites. Here we find analogous

behavior in the dynamical tunneling of a Bose-Einstein condensate between period-one resonances in a

single driven potential well. For small nonlinearities we find unhindered tunneling between the reso-

nances, but with an increasing period as compared to the noninteracting system. For nonlinearities above a

critical value we generally observe that the tunneling shuts down. However, for certain regimes of

modulation parameters we find that dynamical tunneling reemerges for large enough nonlinearities, an

effect not present in spatial double-well tunneling. We develop a two-mode model in good agreement with

full numerical simulations over a wide range of parameters, which allows the suppression of tunneling to

be attributed to macroscopic quantum self-trapping.
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The transition from the classical to the quantum world is
a subject of intense interest. In particular, the topic of
quantum chaos studies systems which exhibit chaotic dy-
namics in the classical limit of @ ! 0 [1–5]. An important
phenomenon in driven one-dimensional quantum systems
is dynamical tunneling (DT), first identified by Heller and
Davis [6]. This is a classically forbidden process whereby
particles trapped in a regular region of phase space may
quantum-mechanically tunnel to another. The behavior of
such systems has provided important insights into the
quantum-classical transition [7–14]: in particular, the pe-
riod of the DT is strongly affected by a number of subtle
effects [11–14]. Dynamical tunneling has mostly been
studied in the single-particle regime [12,15–19], and has
been demonstrated experimentally with ultracold atoms in
modulated optical lattice potentials [20,21]. Recently it has
been shown in Ref. [14] that atomic interactions in trapped
Bose-Einstein condensates (BECs) can have a detectable
effect for experimentally realistic parameters. Here we
investigate the effect of repulsive atomic interactions on
the DT of a trapped BEC through the variation of the
nonlinearity, U. A priori, the effect of nonlinearity on a
given dynamical system is not clear. It has been shown to
suppress transport in the kicked rotor and oscillator
[22–25], and Landau-Zener tunneling in optical lattices
[26], but may enhance [27] or suppress [28] transport in
quantum ratchets.

We find that DT also occurs for the interacting system
with U > 0 up to a critical interaction strength Ucrit.
Beyond Ucrit we find that DT mostly ceases. We connect
the DT suppression to the phenomenon of macroscopic
quantum self-trapping (MQST) using a two-mode model
based on Floquet tunneling states. It allows us to predict
the critical nonlinearity Ucrit from knowledge of the non-
interacting system, and to understand the increase of the

tunneling period with U that we find numerically. While
previous work reported detrimental effects of nonlineari-
ties on DT [29], a connection with MQST was not made.
Surprisingly, at higher nonlinearities with U >Ucrit we
find some parameter ranges where DT reappears. This
effect has no analogue in bosonic Josephson junctions,
where MQST has been extensively studied [30–32] and
demonstrated experimentally [33].
We begin by reviewing the DT of ultracold atoms. For

classical atoms in a one-dimensional (1D) potential to
exhibit chaotic dynamics, the potential must be both driven
and anharmonic. The experiments demonstrating DT used
a modulated sinusoidal potential provided by an optical
lattice [20,21]. Here we instead consider the dimensionless
classical Hamiltonian

H ¼ p2

2
þ Vðx; tÞ � p2

2
þ �½1þ � cosðtÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
; (1)

where � is the potential strength, � the amplitude of the
modulation, and x and p are position and momentum
coordinates respectively. Potentials Vðx; tÞ as in Eq. (1)
can be realized on atom-chip traps in the radial direction
[14]. This potential has the conceptual advantage of not
being periodic in space; however, the physics we describe
below will be generic for any one-dimensional potential
where DT is realized.
For our quantum treatment of the system we consider a

BEC subjected to this single-particle Hamiltonian. We
assume that mean-field theory is valid and the BEC is
well described by the wave function � � �ðxÞ that
evolves according to the Gross-Pitaevskii equation (GPE)
[34]: i@eff

@
@t� ¼ ½H þUj�j2��, with

R
dxj�j2 ¼ 1.

Here p of Eq. (1) becomes p ¼ �i@eff
@
@x and consequently½x; p� ¼ i@eff . U parametrizes the nonlinearity, stemming

from s-wave interactions, and @eff denotes the effective
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Planck’s constant. It arises naturally when rescaling all
variables in the GPE to be dimensionless [14], and indi-
cates how ‘‘quantum’’ the system is, with @eff ! 0 being
the classical limit.

The classical system Eq. (1) is integrable for � ¼ 0. The
Kolmogorov-Arnol’d-Moser theorem [2] states that regular
regions of motion persist in phase space for � > 0, but
become increasingly destroyed as � is increased [14]. An
example is shown in the Poincaré section of Fig. 1(a),
where coordinates of classical motion from a large range
of initial conditions are plotted stroboscopically, i.e., at
times t ¼ 2�n for n 2 N. A key feature is the two large
period-one islands of regular motion I�, traced by trajec-
tories of atoms moving in phase with the modulation of the
potential [20]. The Kolmogorov-Arnol’d-Moser theorem
forbids classical trajectories connecting these islands.

Quantummechanics, however, allows tunneling to occur
between the period-one islands. Consider the linear
Schrödinger equation (U ¼ 0) obtained from the quantized
form of the Hamiltonian Eq. (1). To relate the quantum
dynamics of the modulated system to the classical phase-
space, we use Floquet states [2], denoted juni, that are
invariant up to a phase under time evolution through one
modulation of period T, and can hence be found as eigen-

vectors of the time evolution operator: Ûð0; TÞjuni ¼
exp½�i�nT=@eff�juni [14]. The operator Ûð0; TÞ evolves

the wave function from time t ¼ 0 to t ¼ T. As Û is
unitary, the quasienergy �n is real. The period-one islands
of regular motion occur in the Floquet spectrum as a pair of
states that are even or odd, respectively, under the trans-
formation p ! �p, and have support on both islands, as
shown by the phase space Husimi function in Fig. 1(b).
We label these linear tunneling states juei (even) and
juoi (odd).

An atomic wave packet that is initially localized on a
single period-one island is a superposition of tunneling

states: ju�ð0Þi ¼ ½jueð0Þi � ijuoð0Þi�=
ffiffiffi
2

p
[35], where

juþi is located on the island with p > 0. Using the time

evolution of Floquet states, we have Ûð0;nTÞju�ð0Þi¼
e�i�enT=@eff ½jueð0Þiþ ieið�e��oÞnT=@eff juoð0Þi�=

ffiffiffi
2

p
. This gives

rise to quantum tunneling. Its experimental signature is a
classically forbidden periodic reversal of the stroboscopi-
cally sampled atomic momentum as observed in
Refs. [20,21]. The quasienergy splitting of the odd and
even tunneling states determines the linear period of DT:
Tlin ¼ 2�@eff=j�e � �oj.
For U > 0 the problem is nonlinear, and we cannot

construct the operator Û from the evolution of a set of
basis states. Instead, we find nonlinear Floquet states [31]
that are solutions �n of

�
� @

2
eff

2

@2

@x2
þ Vðx; tÞ þUj�nj2 � i@eff

@

@t

�
�n ¼ En�n;

(2)

periodic in the time dimension: �nðx; tÞ ¼ �nðx; tþ 2�Þ
and vanishing for x ! �1. A state �nðx; 0Þ will reform
after one driving period of evolution with the GPE, up to a
phase �EnT=@eff , analogous to the linear case [36]. We
only consider the even (odd) nonlinear Floquet states
localized on the islands, labeled j�ei (j�oi).
Using j�e=oi we simulate DT with the GPE and U > 0.

We choose � ¼ 1:3, � ¼ 0:2 and @eff ¼ 0:5, solving for
nonlinear Floquet states up to U ¼ 2. We begin simula-

tions in the state j�i ¼ j�þi ¼ ½j�ei þ ij�oi�=
ffiffiffi
2

p
[35],

and evolve it with the GPE for 1500 modulation periods.
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FIG. 1 (color online). (a) Poincaré section for the classical
Hamiltonian Eq. (1) with � ¼ 2:3, � ¼ 0:3, showing regular
islands Iþ, I� separated by a region of chaos. (b) Husimi
function Qðx; pÞ of the even tunneling Floquet state:
Qðx; pÞ½�� ¼ jh�j�ij2=ð2�@effÞ for @eff ¼ 0:5, where j�i is a
coherent state centered on momentum p and position x.
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FIG. 2 (color online). (a)–(c) Stroboscopic momentum
space density showing the transition from (a) DT to (b) MQST
and (c) back to DT, with � ¼ 1:3, � ¼ 0:2 and U ¼
f1:2; 2:3; 3:4g � 10�2 respectively. (d)–(f) Comparison of GPE
Floquet state populations d�ðtÞ ¼

R
dx���ðx; tÞ�ðx; tÞ (lines)

with two-mode model results [crosses, jc�j2 see Eqs. (3) and
(5)]. Black solid line: jdþj2, red dashed line: jd�j2, black dotted
line: ntot�jdþj2þjd�j2, black crosses jcþj2, red crosses: jc�j2.
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We sample the momentum space wave function of the BEC
once every driving period T, with the results shown in
Fig. 2.

For U ¼ 0:012 we can see DT despite the nonlinearity
[Fig. 2(a)]. Its hallmark is a complete reversal of the system
momentum on time scales as long as about 500 modulation
periods. This tunneling period is roughly three times longer
than in the noninteracting case.

For U ¼ 0:023 complete momentum reversal no longer
takes place, and the population becomes trapped in phase-
space [Fig. 2(b)]. This phenomenon is analogous to the
cessation of interwell tunneling due to MQST in a bosonic
Josephson junction [30–33]. For U ¼ 0:034 we surpris-
ingly find that tunneling returns [Fig. 2(c), see also
Fig. 3(a)]. For this parameter set it then persists for all
nonlinearities that we modeled, as high as U ¼ 2—an
effect that is not seen in the bosonic Josephson junction.
In contrast, for many other parameter sets, tunneling
remains suppressed asU is increased beyond the first onset
of trapping. An extensive survey of parameter space will be
presented in Ref. [37].

To understand these results, we derive a two-mode
model based on the nonlinear Floquet states. We assume
that the time-dependent solution of the GPE can be
approximated by two equivalent expressions

c ðx; tÞ ¼ cþðtÞ�þðx; tÞ þ c�ðtÞ��ðx; tÞ; (3a)

c ðx; tÞ ¼ ceðtÞ�eðx; tÞ þ coðtÞ�oðx; tÞ: (3b)

Members of both pairs are orthogonal by symmetry. We
next insert Eq. (3b) into the GPE, make use of Eq. (2),
project out the equations of motion for ceðtÞ and coðtÞ, and
finally change basis to cþðtÞ and c�ðtÞ. After defining
�E ¼ ðEe þ EoÞ=2, �E ¼ Ee � Eo and coupling coeffi-
cients Uij with fi; jg 2 fe; og and Aeo:

UijðtÞ ¼ U
Z

dxj�iðx; tÞj2j�jðx; tÞj2; (4a)

AeoðtÞ ¼ U
Z

dx�2
eðx; tÞ��2

o ðx; tÞ; (4b)

which are periodic in time with period T, we obtain:

i@eff
@

@t
c� ¼ �Ec� þ �Ec�=2þRefAeogjc�j2c� � iImfAeogjc�j2c� þ ½Ueo �RefAeog=2�Uee=4�Uoo=4�jc�j2c�

þ ½iImfAeog=2�Uee=4þUoo=4�jc�j2c� þ ½Uee=4þUoo=4�Ueo �RefAeog=2�c2�c�� þ ½iImfAeog=2
þUee=4�Uoo=4�c2�c��: (5)

To test the model, we extract the populations of the modes
��ðx; tÞ as a function of time from the full simulations of
the GPE, and compare them with the predictions of the
two-mode model in Figs. 2(d)–2(f). In Fig. 3(a) we com-
pare the tunneling period of the full GPE against the two-
mode model as a function of the nonlinearityU. The results
demonstrate excellent agreement for these parameters.

To analyze self-trapping, we consider the population
imbalance z ¼ Nþ � N� and relative phase ’ ¼
�� � �þ, where c� ¼ ffiffiffiffiffiffiffi

N�
p

ei�� with N�, �� 2 R, fol-
lowing Ref. [30]. For an analytical treatment, we replace
the coefficients Eq. (4) by their average, e.g., UijðtÞ !
�Uij ¼ 1

T

R
T
0 UijðtÞdt, since tunneling takes place on longer

time scales. It can be shown that Imf �Aeog ¼ 0 [37]. The
equations of motion for z and ’, following from Eq. (5),
could be derived from the effective Hamiltonian

Heff ¼ �

2
ð1� �Þ þ ��1=2 cosð’Þ þ 	� cosð2’Þ; (6)

where � ¼ 1� z2 and � ¼ ð �Uee þ �UooÞ=4þ 3Ref �Aeog=
2� �Ueo, � ¼ ð �Uee � �UooÞ=2��E, 	 ¼ �Ueo=2�
ð �Uee þ �UooÞ=8þRef �Aeog=4. For � ¼ 1 and 	 ¼ 0
Eq. (6) simplifies to the Hamiltonian of Ref. [30], which
analyzed MQST for a BEC in a spatial double-well
potential.

Following Ref. [30] we can find Hamiltonian parameters
for which DT cannot occur. Starting from zð0Þ ¼ 1, energy

conservation requires that for zðtÞ ¼ 0 at some time t, there
must exist a solution to

1

2
� ¼ � cos½’ðtÞ� þ 	 cos½2’ðtÞ�: (7)

The atoms are self-trapped when this equation cannot
be fulfilled for any ’ðtÞ. If we assume j�Ej � j	j

∅E

5 10 15
|∆

E
|

0 0.02 0.04
0

2

4

6

U

T
-1

[1
0

-3
]

0.1 0.2 0.3 0.4

2
4
6

εU
cr

it[1
0 -

3
]

1
10

-4
10

-2
10

0

U
cr

it (c)

(b)(a)

1/h
eff

10
-4

10
-2

10
0

2
4
6

|∆
E

| [
10

 -
3
]

FIG. 3 (color online). (a) Dependence of the tunneling rate
T�1 on the nonlinearity U, showing intermittent MQST for U 2
½1:4; 2:2� � 10�2, with � ¼ 1:3, � ¼ 0:2 as in Fig. 2. Black solid
line: GPE solution, crosses: two-mode-model [Eq. (5)] with
overlap coefficients from Eq. (4). Red open circles: T�1

nl ¼
jEeðUÞ � EoðUÞj=2�@eff . (b),(c) Critical nonlinearity and tunnel
splitting for � ¼ 1:2 (b) as a function of � for @eff ¼ 0:15, and (c)
and as a function of @eff for � ¼ 0:2. Blue dots: estimates from
linear Floquet states usingUcrit ¼ 2j�Ej=j�0j. Red open circles:
nonlinear two-mode model, using Eq. (7). Black crosses: ex-
tracted from full GPE simulations. Magenta squares: energy
difference of Floquet states j�Ej.
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and j�Ej � jð �Uee � �UooÞ=2j, empirically justified in most
cases, we find that tunneling is impossible if
U >Ucrit ¼ 2j�Ej=j�0j. Here �0 ¼ �=U is an overlap
integral between Floquet states that no longer explicitly
depends on U, but does so implicitly through the shape of
j�iðx; tÞj2. We can then estimate the critical nonlinearity
for self-trapping from the linear Floquet states, as they
are generally very similar to the nonlinear Floquet
states for U <Ucrit. Instead of Eq. (4), we then

consider: ~UijðtÞ ¼ U
R
dxjuiðx; tÞj2jujðx; tÞj2 and ~AeoðtÞ ¼

U
R
dxu2eðx; tÞu�2o ðx; tÞ.

Equation (7) does not always predict self-trapping. For
	 	 � (usually fulfilled) the self-trapping condition is

1<

��������
�

2�

��������¼
��������
ð �Ueeþ �UooÞ=4� �Uoeþ3Ref �Aeog=2

�Uee� �Uoo��E

��������: (8)

Aside from�E in the denominator, all terms in the fraction
on the right-hand side are proportional to the nonlinearity
U. For U � �E the nonlinearity then cancels out, and the
condition Eq. (8) depends only on the overlap integrals
�Uij=U and �Aeo=U. These again are only weakly dependent

on the nonlinearity U through the shape of j�iðx; tÞj2.
In particular for parameters where �oðx; tÞ and �eðx; tÞ
have a significant difference in mean interaction energy,
j �Uee � �Uooj, we will expect to see a reappearance of
tunneling at large U. This occurs for values of � & 2; we
find for � * 2 that �Uee 
 �Uoo [37]. An example without
trapping at large U is illustrated in Fig. 3(a). The reappear-
ance of tunneling, a striking difference to the spatial
double-well case, arises because the nonlinearity here
affects both the self-energy of each tunneling mode and
the effective mode coupling.

In Figs. 3(b) and 3(c) we plot the dependence of Ucrit on
the driving amplitude � and inverse effective Plank’s
constant 1=@eff , comparing Ucrit ¼ 2j�Ej=j�0j with a
direct extraction from Eq. (5) and from the GPE. All
models are in excellent agreement over a wide range of
parameters. Plots of Ucrit directly reflect the groove
structure also present in j�Ej � 1=Tlin [14], indicating
only minor changes in the coefficients �0. A complete
analysis of these parameter variations will be presented
elsewhere [37].

The 1D nonlinearity U can be related to experimental
parameters by accounting for the details of the confinement
geometry [14]. For example, for � ¼ 2:3, � ¼ 0:3 we find
Ucrit ¼ 0:004 (onset of trapping) for N ¼ 8 atoms.
However, tunneling will occur for U ¼ 2 with � ¼ 1:3,
corresponding to N ¼ 4590 atoms [38]. These disparate
values for N highlight the importance of our results for any
experimental realization of dynamical atom-chip tunnel-
ing. We note that the large @eff used here would require
challengingly tight trapping potentials [14,38]. These in
turn make experiments with large U more realistic.

In summary, we have demonstrated that the analogue of
macroscopic quantum self-trapping in a bosonic Josephson
junction exists in the DT of BECs. However, we have
discovered parameter regimes where MQST is lifted for
large nonlinearities. We have shown that most of these
features are reproduced by the dynamics of a simple two-
mode model. An interesting extension of our work would
be to consider the quantum many-body two-mode model,
using the methods of Refs. [28,39,40], or considering
heating effects that can result from nonlinearities in the
presence of driving [41].
We would like to thank P. B. Blakie, M. Lenz, and
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Council’s Discovery Projects funding scheme
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