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Experiments on the ultimatum game have revealed that humans are remarkably fond of fair play. When
asked to share an amount of money, unfair offers are rare and their acceptance rate small. While empathy
and spatiality may lead to the evolution of fairness, thus far considered continuous strategies have
precluded the observation of solutions that would be driven by pattern formation. Here we introduce a
spatial ultimatum game with discrete strategies, and we show that this simple alteration opens the gate to
fascinatingly rich dynamical behavior. In addition to mixed stationary states, we report the occurrence of
traveling waves and cyclic dominance, where one strategy in the cycle can be an alliance of two strategies.
The highly webbed phase diagram, entailing continuous and discontinuous phase transitions, reveals

hidden complexity in the pursuit of human fair play.
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Imagine two players having to share a sum of money.
One proposes a split, and the other can either agree with it
or not. No haggling is allowed. If there is an agreement, the
sum is shared according to the proposal. If not, both players
remain empty handed. This is the blueprint of the ultima-
tum game, as proposed by Giith et al. [1]. Therein, a
rational proposer should always claim the large majority
of the sum, given that the responder ought to accept even
the smallest amount offered. Experiments, however, reveal
a different reality: one where the selfish and fully rational
Homo economicus frequently gives way to the emotional
Homo emoticus [2]. In fact, largely regardless of sex, age,
and the amount of money at stake, people refuse to accept
offers they perceive as too small [3,4]. More precisely,
offers below one third of the total amount are rejected as
often as they are accepted, and not surprisingly, more than
two thirds of all offers will be remarkably close to the fair
50:50 split.

While explanations for the human fondness of fair divi-
sion range from the psychologically-inspired definitions of
utility functions [5] to the failure of “‘seizing the moment”
(implying that after the game there will be no further
interactions between the two players) [6], theoretical stud-
ies indicate that empathy [7,8], spatial structure [9-11],
heterogeneity [12], and reputation [13] play a pivotal role.
In particular, Page et al. [9] have shown that in well-mixed
populations natural selection favors the rational solution,
while spatiality may lead to much fairer outcomes. This
result has been tested thoroughly against different types of
players and updating rules [11], on various interaction
networks [14-18], as well as under coevolution [19].
Although there is no doubt that spatial structure promotes
the evolution of fairness, it is interesting that even in a
nonspatial setting fair play may evolve if the population is
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small [20] or if players are empathetic, i.e., if their offer p
matches the acceptance level g [7].

Apart from occasionally studied minigame versions of
the ultimatum game [13], which consider only a few
representative strategies and are traditionally employed
to demonstrate principles of general importance, previous
works focused on the full continuum of strategies as given
by p, g € [0, 1] (without loss of generality assuming that
the sum to be divided equals one). Here we depart from this
concept by proposing a spatial ultimatum game with dis-
crete strategies in order to reveal solutions that are driven
by pattern formation. Unlike minigames, which typically
feature a small number of carefully chosen strategies, we
still consider the whole unit interval of p and ¢g. But instead
of the infinite number of continuous strategies, we intro-
duce N discrete strategies E; where i =0, 1,...,N — 1, as
schematically depicted in Fig. 1 for N = 5. We consider E;
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FIG. 1 (color online). Schematic presentation of five discrete
empathetic strategies E; (i =0, 1, 2, 3, 4) with the possible
values of p = g spread across the unit interval. The additional
strategy A is characterized by an arbitrary (p, ¢) pair. While in
the absence of A players adopting the fair E, strategy are the
undisputed victors, the outcome changes dramatically when the
A strategy is present, and it depends intricately on the (p, g) pair
that characterizes it.
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to be empathetic players and thus characterized by p = ¢,
yet contested by an additional strategy A that is character-
ized by an arbitrary (p, g) pair. Initially, we thus have
N + 1 strategies that are distributed at random with equal
probability on a L? square lattice, whereby each player x is
assigned a (p, g) pair, corresponding to its offering and
acceptance level. For players adopting strategy A we
will consider the fixed p and ¢ values as the two main
parameters determining the evolutionary outcome of
the game, while a player x adopting one of the E; (i =
0,1,..., N — 1) empathetic strategies has p, = g, = (r +
i)/ N where the random real number r € [0, 1) is drawn for
the creation of the strategy (either in the initial state or
during the strategy adoption process).

The evolution of the initial strategy distribution is per-
formed by repeating the following elementary steps in
accordance with the Monte Carlo simulation procedure.
First, a randomly selected player x acquires its payoff U,
by playing the ultimatum game with its four nearest neigh-
bors, whereby in each pairwise interaction acting once as
proposer with p, and once as a responder with ¢,. Next, a
randomly chosen neighbor, denoted by y, also acquires its
payoff U, in the same way. Lastly, player x tries to enforce
its strategy on player y in accordance with the probability
w = {1 +exp[(U, — U,)/K]}"!, where K quantifies the
amplitude of noise [21]. Without loosing generality, we set
K = 0.1, making it very likely that better performing play-
ers will pass their strategy onto their neighbors, yet it is
also possible that players will occasionally learn from
those performing worse.

We emphasize that during the imitation of an empathetic
strategy E; (i = 0,..., N — 1) a new random number r is
generated for the corresponding value of p, = g, in order
to take into account the role of mutation, which was also
considered in the continuous ultimatum game [13]. The
possibility of slight modifications of the (p, g) values
corresponding to a given strategy reduces the sensitivity
to initial conditions. Conversely, for the adoption of the
strategy A the inherited (p, ¢) pair remains unchanged.
This allows us to study the evolutionary response of the
empathetic population to an attack of a given strategy A.

For the evolutionary process the time is measured in
Monte Carlo steps (MCS). During one MCS each player
has a chance once on average to modify its strategy. For the
systematic numerical analysis we have determined the
fraction of strategies in the final stationary state when
varying the values of p and g. For the evaluation of the
phase diagram with an adequate accuracy (see Fig. 2), we
have used appropriate system sizes, varied from L = 400
to 6000, by applying periodic boundary condition.
Thermalization and sampling times changed from ¢,, ¢,;, =
10* to 10° MCS and small variations in the values of p and
q are used in the vicinity of phase transitions.

Before presenting the main results, we briefly survey the
outcome of the game under well-mixed conditions. In the

absence of strategy A, the fair FE, strategy prevails over
other empathetic strategies [17]. The E, strategy can also
dominate strategy A(p, g), but only if ¢ < 0.5 or p > 0.5.
For p < 0.5 and ¢ > 0.5 E, and A are neutrally stable and
subject to random drift, thus always resulting in a fixation
if the population is finite.

Figure 2 shows the qualitatively distinguishable phases
in the final stationary state as a function of p and ¢q. If
q>p or p>0.82 strategy A dies out and the system
evolves into a homogeneous state where only the fair E,
strategy remains alive, that is the system reproduces the
well-known result reported in previous works [7,8], con-
firming that empathy may lead to the evolution of fairness.
Within the complementary triangle, however, there is an
intricately webbed region where much more complex out-
comes are possible. Besides the single (A, E, E;) and two-
strategy [(Ey + A), (E; + A), (E, + A), (E; + A)] phases,
we can observe different three-strategy phases, where the
three strategies are caught up in cyclic dominance [(E, +
E, + A),(E, + E; + A)], or even where one strategy in the
cycle is an alliance of two strategies [E; + (E, +A) + E;].
It is emphasized that below the p = ¢ line within the
complementary triangle players A invade the whole system
if the nonempathetic driving force (p — ¢q) is weaker than a
threshold value dependent on p.

A highlight is also the survivability of strategy E5, which
falsifies the assumption that ““superfair’” behavior, when a
player offers more than it keeps, is unsustainable. In addi-
tion, the fully rational E strategy remains alive in three
phases (denoted Ey, Ey + A, and E; + E; + A), as marked
in the corresponding regions of the phase diagram. Apart
from this, the intermediate strategy E; can also dominate
the other strategies or coexist with them, either in two-
or three-strategy phases. Notice that within the webbed
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FIG. 2 (color online). Phase diagram for N = 5 in the presence
of strategy A characterized by the parameters p and g. Solid red
and dashed blue lines denote continuous and discontinuous
phase transitions, respectively. Besides several single and two-
strategy phases, a rich array of three-strategy phases, in part
governed by intricate cyclic dominance, can be observed.
Further details are given in the main text.

078701-2



PRL 109, 078701 (2012)

PHYSICAL REVIEW LETTERS

week ending
17 AUGUST 2012

triangle, the fair E, strategy can never dominate, and it
occurs only in rather small-sized regions. From this obser-
vation one can conclude that the evolution of fairness by
means of empathy is rather vulnerable in the presence of a
strategy that is not limited by the p = ¢ condition (in our
case strategy A). Yet the vulnerability of fairness does not
stem so much from a direct threat, in the sense that strategy
A would be directly superior to strategy E,, but rather from
the fact that it elevates the survivability of the other strat-
egies. A direct consequence is a high spatiotemporal com-
plexity of solutions, ranging from simple two-strategy
alliances to cyclic dominance between three strategies, as
well as cyclic dominance between two strategies and a
two-strategy alliance [E; + (E, + A) + E,].

The strategy fractions do not define clearly all the rele-
vant features of the final stationary states, as it is demon-
strated by the three snapshots presented in Fig. 3. Panel (a)
of Fig. 3 shows a characteristic snapshot of a self-
organizing pattern with traveling invasion fronts and rotat-
ing spirals that is related to the spontaneous emergence of
cyclic dominance [22] between the three strategies (E; —
Ey— A— E)at p = 0.02 and g = 0. The coexistence of
the same three strategies is maintained by a fundamentally
different mechanism yielding a pattern illustrated in
panel (b) where p = 0.4 and g = 0. The latter strategy
distribution can be interpreted as a poly-domain structure
of the £y + A and E; + A phases resembling the phase
segregation of a water-oil mixture in the presence of a
surfactant [23]. The latter analogy is supported by the
continuous variation (from 0 to 1) in the ratio of the
territory of E; + A and E; + A phases.

The snapshot (c) in Fig. 3 illustrates another three-
strategy state, where strategy A (black) with p = 0.81
and g = 0.536 enables the survival of the superfair Ej
strategy (orange), which on the other hand is inferior to
E, (green). The plotted strategy distribution is formed after
a long transient process. Namely, within a short time the
random strategy distribution evolves into a state dominated
by E, with small growing islands of A strategies. In a small
portion of growing A islands several E; strategies remain
alive and their offspring spread away in the whole system
when the condition of percolation is satisfied.

The time evolution of another remarkable self-
organizing pattern is illustrated by three consecutive snap-
shots in Fig. 4, which correspond to the stationary state.
Because of the cyclic dominance (E; — (E, + A) —
E, — E;) emerging for the given (p, ¢) pair, the islands
of E, players are growing in the sea of E; players. The
growth is blocked once these islands become infected by A,
which yields the appearance of the E, + A phase, which in
turn can be invaded by E|. In some cases, however, several
E, players survive by forming a sufficiently large nucleon,
which closes the loop of cyclic dominance. We note again
that in this case the loop of dominance is not formed by
three strategies, as, for example, by the E, + E; + A phase
[see Fig. 3(a)], but rather it consists of two strategies (E;
and E,) and an alliance of two strategies (E, + A).
Although similarly complex phases have been reported
before in spatial ecological models [24] and most recently
for the spatial public goods game with pool punishment
[25], the current observation enforces that such exotic
solutions may be significantly more common than initially
assumed, especially in systems describing human behavior.

Finally, we examine quantitatively the properties of
phase transitions depicted in Fig. 2, which delineate all
the different phases that we have graphically described in
Figs. 3 and 4. Figure 5(a) shows consecutive continuous
phase transitions leading from the pure A phase, over the
two-strategy Ej + A and the three-strategy Ey + E| + A
phase, to the two-strategy E; + A phase when p is in-
creased for ¢ = 0.1. As mentioned above, the three-
strategy E, + E5 + A phase can be considered as the
poly-domain combination of the E, + A and the E; + A
phase. Qualitatively similar continuous phase transitions
can be observed for larger p values (if ¢ = 0.1), as illus-
trated in Fig. 5(b). The two-strategy E, + A and E; + A
phases are separated by the three-strategy E, + E, + A
phase via continuous transitions if g is increased for p =
0.77, as shown in Fig. 5(c). On the contrary, Fig. 5(d)
represents a discontinuous phase transition from E; + A
to E, + A. Even more interestingly, the transition line
separating the pure E, phase and the exotic E; + (E, +
A) + E, phase changes from continuous to discontinuous
via a tricritical point at p = 0.6483 and g = 0.27. For

FIG. 3 (color online).

Characteristic spatial patterns emerging
for different combinations of p and ¢: (a) p = 0.02 and ¢ = 0;
®) p=04 and ¢ =0; (¢c) p=0.81 and g = 0.536. In all
panels the system size is L = 240 and the strategy colors are
those introduced in Fig. 1.

FIG. 4 (color online). Evolution of the strategy distribution for
the exotic E, + (E, + A) + E, phase occurring at (p,q) =
(0.645,0). The snapshots were taken at times (a) ¢ = 1000,
(b) 1100, and (c) 1200 MCS for L = 240. The colors of
strategies are those introduced in Fig. 1.
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FIG. 5 (color online). Representative cross sections of the
phase diagram depicted in Fig. 2 [panels (a—e)], along with the
evolution of the order parameter f, (the fraction of strategy E,)
for different values of g [panel (f)]. The symbols indicate results
for the strategy fractions as a function of p (or ¢) for fixed ¢ (or
p) values, as indicated in the corresponding panels.

higher ¢ values the transition is continuous as illustrated in
Fig. 5(e). By decreasing g, however, the transition becomes
discontinuous and the jump in the order parameter fp,
grows gradually as shown in Fig. 5(f).

In summary, we have proposed and studied a spatial
ultimatum game with a discrete set of strategies for a
dynamics based on stochastic imitation of a neighboring
strategy. The strategy set included N empathetic strategies
and an additional A strategy characterized by fixed pro-
posal (p) and acceptance (g) values. We would like to
emphasize that discreteness of possible parameters char-
acterizing empathetic strategies is a natural assumption
since human bargain is indeed practically conducted in
this way. Our numerical analysis was performed for N =
5 at a low noise level in order to study the reaction of the
empathetic players to the presence of strategy A on the
structured population. All the main findings, however,
summarized by the phase diagram in Fig. 2, are robust
and remain valid also for larger N. Naturally, more empa-
thetic strategies offer more coexistence possibilities with
the strategy A below the ¢ = p diagonal. We have also
tested and confirmed the emergence of alliances for the so-
called death-birth strategy updating, where a player is
chosen randomly to die and the neighbors compete for
the empty site proportional to their payoffs [26]. This

modification too does not alter the possible solutions, and
indeed results in a very similar phase diagram. We have
thus shown that the previously reported evolution of fair-
ness by means of empathy and spatiality is feasible in the
absence of strategy A, even for the discrete set of strategies
used. Furthermore, we have shown that the introduction of
the additional strategy A does not influence the final sta-
tionary state for sufficiently large values of p or ¢ > p
because players adopting strategy A become extinct within
a short transient time, and finally the fair players come to
dominate the system. On the contrary, below the p = ¢
line on the p — ¢ plane players A can survive, either alone
or by forming complex alliances with the empathetic strat-
egies. Besides the mentioned homogeneous states, we have
observed several types of strategy coexistence that were
maintained by different mechanisms, primarily routed in
the formation of intricate patterns on the spatial grid. Each
type of these solutions represents a particular way by
means of which a portion of the empathetic players can
survive in the presence of nonempathetic behavior. In some
cases, a nonempathetic strategy can stabilize rational strat-
egies that would be employed by Homo economicus, as
well as completely irrational strategies that could be
adopted by an extremely generous Homo emoticus. At
the same time, the wide variety of solutions highlights
the sensitivity of the system to the parameters of the
strategy A. The present model supports the spontaneous
emergence of strategy associations (composed from a sub-
set of strategies with a specific spatiotemporal structure),
which play a fundamental role in many human and bio-
logical systems, and as demonstrated in this Letter, can be
studied in the theoretical framework of evolutionary games
with methods of statistical physics.
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