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A number of important biological tissues such as nacre, tendon, and bone consist of staggered structural

arrays as universal motifs. Such arrays usually include stiff fibril-like (or plateletlike, or needlelike)

elements embedded in an extrafibrillar (XF) phase. This work discusses the effect of the stiffness of such

an XF matrix on the elastic properties of the resulting staggered composite. In the case of most biological

composites, this XF stiffness is hardly accessible and very little data are available. We develop an analysis

based on previous analytical formulation that results in a relation between the XF modulus and the

deformations of the staggered particles. This analysis is then used to back-calculate the yet unmeasured

modulus of the XF phase from experimental deformation data, thereby providing a simple alternative to

potentially complex direct measurements. This is demonstrated and validated for parallel-fiber bone tissue.
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Staggered structures typically include an array of
discontinuous fibrils (or platelets, or needles) embedded
in extrafibrillar (XF) matrix material. Such staggered struc-
tures are found in a variety of biological tissues such as
nacre, tendon, bone, and more, and their mechanical char-
acteristics depend on the geometry and the stiffness of their
components. In nacre, the XF phase consists of organic
material located between aragonite bricks. In tendon, it
consists of noncollagenous material found between colla-
gen fibrils. Bone is a more complex structure, because it
includes several hierarchical scales. At the smaller scale of
the single mineralized collagen fibril, the XF matrix is
identified with the collagen medium located between stag-
gered hydroxyapatite (HA) platelets. At a higher scale, a
noncollagenous XF matrix exists between staggered min-
eralized collagen fibrils. In general, the XF phase is thought
to significantly affect the elastic properties, strength, and
toughness of staggered biological structures [1]. The de-
formations in such structures can be roughly described by
two simultaneous mechanisms: stretching of the fibrils and
sliding between two adjacent fibrils [2,3]. In fact, finite
element simulations indicate that the actual deformations
involve both nonuniform stretching of the fibrils and non-
uniform stretching and shearing of the XF matrix [4]. In a
number of experimental works, the relative stretching of
the staggered elements with respect to the overall deforma-
tions was measured (e.g., [5,6] in tendon and [7,8] in bone).
These works suggest that a significant portion of the overall
deformation can be attributed to the XF matrix rather than
to the elongation of the staggered elements. The literature
includes a wide range of theoretical estimations of the XF
modulus, but there are very few experimental data to sup-
port these estimations due to the complexity of measuring
the modulus of a very soft and thin embedding material.

The relations between the structural characteristics of
the staggered array and its elastic properties have been
described by a variety of modeling schemes over the past

years. Initial mechanical models for stress transfer in a
staggered structure were proposed [9,10]. Perturbation
approximations have been proposed to evaluate the dis-
placements within a staggered structure, but their accuracy
is limited to the particular case of very soft XF material
and very thin spacing between the sequential fibrils [11].
A model for a generic staggered geometry, termed here the
Bar-On–Wagner (BW) model, was recently formulated [4].
This model provides an approximate analytical solution for
the displacement and stress fields, and its accuracy is well
supported by finite element simulations for a wide range of
staggered configurations.
In the present work, the effect of the XF modulus on the

deformations of the fibril (or platelet) elements within a
staggered structure is evaluated. Analytical relations are
derived from the BW model, and the effect of variations
in the XF stiffness is examined. We then use the analysis to
back-calculate the yet unmeasured modulus of the XF phase
from experimental deformation data, thereby providing a
simple alternative to more complex direct measurements.
This is illustrated for parallel-fiber bone.
A staggered structure, as typically can be found in bone,

tendon, nacre, and more, is considered here as a two-
dimensional array of fibrils (or platelets) embedded inside
an XF matrix in a staggered periodic manner. The struc-
ture is characterized by a repeated unit cell, as shown in
Fig. 1. The fibrils and the XF matrix are assumed to be
well-bonded and isotropic, with Young moduli EXF and Ef

FIG. 1 (color online). A two-dimensional staggered structure
and its unit cell.
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(for simplicity, we consider �XF ¼ �f ¼ 0:3). The stag-

gered array can be characterized by three parameters: the
fibril volume fraction �f, aspect ratio �f, and thickness

ratio between the fibril and the unit cell �f [12]. If the

fibrils’ longitudinal and lateral spacings are considered to
be equal, the structure can be defined by �f and �f, where

�fð�f; �fÞ. Upon macroscopic deformation (û) of the unit

cell, both the matrix and the staggered fibrils are being
deformed in a nonuniform manner. This elastic response is
adequately described by the BW model, providing an
analytical expression for the local deformation field and
giving a close formula for the overall effective modulus of
the staggered array [4]. Figure 2 plots representative de-
formation functions along the upper fibril within the unit
cell, calculated by the BW model for �f ¼ 0:5, �f ¼ 10,

and selected E�
XF ¼ EXF=Ef ratios. The local displace-

ments uðxÞ are normalized by the overall deformation of
the unit cell (û); uf marks the displacement at the edge of

the fibril, and "f ¼ uf=û represents the deformation ratio

between the fibril and the unit cell. In practice, "f was

measured for different types of biological materials such as
tendon [5,6], parallel-fiber bone [7,8], and more. The ef-
fective modulus of the staggered structure, Eeff , is calcu-
lated for each of the selected E�

XF ratios, and the
normalized effective modulus E�

eff ¼ Eeff=Ef is indicated

in the figure. The XF matrix in such staggered structures
functions as a medium responsible for load transmission
between the discontinuous fibrils, modulated by its stiff-
ness. Considering, for example, the curves in Fig. 2, the
presence of soft XF material yields relatively mild fibril
deformations (low "f) and a low overall modulus of the

structure, an indication of poor load transmission by the XF
medium; stiffer XF materials are associated with improved
load transmission, leading to more significant fibril defor-
mations (higher "f ratios) and a higher overall modulus.

In general, the fibril deformation ratio ("f) is an analyti-

cal function of E�
XF, which can be extracted from the BW

solution for any specific staggered geometry (i.e., �f, �f).

This function is plotted in Fig. 3 for selected staggered
configurations, including different fibril contents (�f ¼
0:2; 0:5; 0:7; 0:9; 0:95) and two aspect ratios: �f ¼ 100,

which is typical of long fibrous materials such as tendon,
bone, and enamel [Fig. 3(a)], and �f ¼ 10 representing

brick-and-mortar geometry as in nacre [Fig. 3(b)]. The plots
are shown on a half-log scale for 10�5 < E�

XF < 10�2,
a typical range for most staggered biological materials.
Figure 3 shows that the fibril deformation ratio ("f)

increases as �f and �f increase—indicating that a greater

portion of the load is being sustained by the fibrils resulting
in a stiffer structure.
It can be seen that the curves in Fig. 3 exhibit a loga-

rithmiclike dependence (shown by the dashed lines) along
part of the E�

XF range:

"f ¼ logðE�
XF=E

0
XFÞ

logðE1
XF=E

0
XFÞ

; (1)

where E0
XF and E1

XF are defined as the intersection point
between the approximated logarithmic curve with "f ¼ 0

and "f ¼ 1, respectively. Both E0
XF and E1

XF are functions

of the staggered geometry, and their magnitudes increase
as �f and �f decrease. Within the region E0

XF <E�
XF <

E1
XF, the elastic deformations of the staggered structure are

significantly affected by the XF modulus. In the case of
E�
XF < E0

XF, the fibril deformations can be considered neg-
ligible compared to the overall deformation, and the over-
all stiffness of the staggered structure is only weakly
affected by the modulus of the fibrils, despite the fact

FIG. 2 (color online). The normalized deformation field along
the upper region plotted for selected E�

XF ¼ EXF=Ef ratios.

E�
eff ¼ Eeff=Ef is given for each case. The vertical dashed line

indicates the edge of the fibril, and the horizontal dotted lines
represent "f ¼ uf=û.

FIG. 3 (color online). "f is plotted as a function of E�
XF for

(a) �f ¼ 100 and (b) �f ¼ 10, and varying �f values. The

dashed lines represent semilogarithmic approximations of the
curves. E0

XF and E1
XF represent the asymptotic E�

XF values,

corresponding to "f ¼ 0 (no fibril deformation) and "f ¼ 1

(as in parallel fibril geometry), respectively.

PRL 109, 078102 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

17 AUGUST 2012

078102-2



that Ef is much greater than EXF. At the other extreme,

E�
XF > E1

XF represents an asymptotic case in which the

fibril stretching is equal to the overall deformation and
the fibrils sustain a major portion of the load (as in the
Voigt model). Further enhancement of E�

XF beyond E1
XF

only mildly increases the overall modulus of the structure.
Different biological structures include various types of

staggered configurations. Nacre and the tooth enamel are
examples of stiff and tightly packed configurations,
consisting of E�

XF � 10�2, �f � 0:95, and �f � 10 and

�f � 100, respectively [12,13]. According to Figs. 3(a)

and 3(b), such configurations are expected to exhibit sig-
nificant fibril deformations ("f � 0:8–0:9), although no

experimental evidence is currently available. Tendon is a
more compliant staggered structure, made of long collagen
fibrils (�f � 0:9 and �f � 100) embedded inside a very

soft XF matrix with E�
XF � 10�4 [14]. Deformation mea-

surements in tendon indicate that "f � 0:43 [5,6], consis-

tent with the theoretical estimation in Fig. 3(a). Figure 3
can be applied to design synthetic staggered structures,
where unique properties can be achieved at the extremes
of the E�

XF range. For example, designing toward E�
XF <

E0
XF (negligible fibril deformations) results in relatively

soft structures with potentially improved fracture resist-
ance due to the presence of the stiff staggered elements.
This has been recently demonstrated with carbon nanotube
reinforced poly-methylmetacrylate electrospun fibers as
well as with bioinspired collagen-HA electrospun fibers,
showing that the stiffness of the composite fibers including
a small amount of carbon nanotubes or HA is comparable
to the ‘‘pristine’’ fibers (without carbon nanotubes or
HA), but their strength and toughness are significantly
increased [15,16].

Despite the significance of the XF modulus with respect
to the elastic response of staggered biological structures, its
value has rarely been measured due to experimental com-
plexity. By using the above analysis, we now evaluate the
XF modulus by back-calculating it from experimental data
of the fibril deformations. The procedure is demonstrated
for parallel-fiber bone tissue which includes two scales of
staggered elements as presented in Fig. 4. The larger scale
of the bone tissue consists of long and tightly packed

mineralized collagen fibrils arranged in a staggered manner
inside an XF matrix. At the smaller scale, the fibrils
themselves are made of staggered HA platelets (denoted
by the subscript ‘‘p’’) embedded inside a collagen matrix
[8,12]. These HA platelets are typically 60–100 nm long
and 2–6 nm thin, and their c axis coincides with the stagger
direction [17]. Experimental data for the platelet and fibril
deformation ratios [8], defined as "p ¼ up=uf and "f ¼
uf=û, are used to evaluate the elastic properties at the

different scales of the bone tissue. Subsequently, the modu-
lus of tissue as a whole (Etissue) is calculated, and the
analysis is compared with independent experimental data
from Refs. [7,8].
First, the modulus of the collagen matrix within the fibril

is evaluated from small-scale deformations data, by which

FIG. 4 (color online). A schematic description of parallel-fiber
bone tissue viewed as a two-scale staggered structure.

FIG. 5 (color online). (a) The platelet deformation ratio ("p) of
parallel-fiber bone as a function of the modulus of the collagen
matrix (Em) and the stagger parameters �p ¼ 0:5� 0:1, �p ¼
30� 10, and �p ¼ 0:7� 0:1. The red and blue symbols repre-

sent the experimentally measured "p ratios, and the vertical lines

lead to the corresponding Em values for wet and dry conditions,
respectively. The full vertical lines correspond to the mean value
Em, and the dashed vertical lines represent the estimation
bounds. (b) The fibril deformation ratio ("f), as a function of

the modulus of the XF matrix (EXF) and the stagger parameters
�p ¼ 0:5� 0:1, �p ¼ 30� 10, and�p ¼ 0:7� 0:1. The purple

symbol represents the experimentally measured "f ratio for both

wet and dry conditions. The full red and blue vertical lines
correspond to the mean value EXF, and the dashed vertical lines
represent the estimation bounds.
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the corresponding modulus of the fibril is estimated.
The fibril is described as a staggered array with a 67 nm
long unit cell [9]. �p ¼ 0:5� 0:1, �p ¼ 30� 10, and

�p ¼ 0:7� 0:1 are considered as relevant stagger parame-

ters, accounting for the variability in platelet dimensions
[17]. "p is calculated for a range of collagen modulus

values (Em), using Ep ¼ 114 GPa as the modulus of the

platelet. The results are plotted in Fig. 5(a). Under dry
conditions the measured platelet deformation ratio is "p �
0:53 [8], which corresponds to a mean value of EmðdryÞ �
2:5 GPa as shown by the full red line in Fig. 5(a). Extreme
bounds for the modulus estimations, 0:7 GPa< EmðdryÞ<
9 GPa, are indicated by the red dashed lines in Fig. 5(a)
and are in agreement with the literature data (e.g., see
[8,9,18]). Using the formula proposed in Ref. [12], we
find EfðdryÞ � 43:5� 3:5 GPa, consistent with finite ele-

ment simulation results [12,13]. Under wet conditions the
measured platelet deformation ratio is "p � 0:34 [8],

which reflects a significant softening of the collagen matrix
with a mean value of EmðwetÞ � 0:4 GPa [full blue line in
Fig. 5(a)] and an estimation range of 0:1 GPa<
EmðwetÞ< 1:4 GPa [blue dashed lines in Fig. 5(a)]. This
leads to a more compliant fibril with EfðwetÞ �
25� 5 GPa.

Next, "f is calculated for a range of XF modulus ratios

(EXF) by considering �f ¼ 100 and �f ¼ 0:9 as typical

parameters for the staggered fibril array [8,12] and using
EfðdryÞ and EfðwetÞ from the previous section. The results

are plotted in Fig. 5(b) for both wet and dry conditions.
Note that the resultant curves could also be extracted from
Fig. 3(a) by scaling the horizontal axis via EXF ¼ E�

XFEf.

Following the experimental measurements, "f � 0:41 for

both dry and wet conditions [8], according to which the XF
moduli are estimated to be EXFðdryÞ � 3� 10�3–3:5�
10�3 GPa and EXFðwetÞ � 1:5� 10�3–2:2� 10�3 GPa,
as shown by the dashed lines in Fig. 5(b). Note that, in
spite of the fact that both the fibrils and the XF matrix
become more compliant in wet conditions, the fibril defor-
mation ratio in parallel-fiber bone ("f) remains insensitive

to the hydration ratio.

To validate the above fibril and XF moduli estimations,
the overall modulus of the tissue is calculated by using the
formula in Ref. [12] and compared with independent ex-
perimental data from the literature. As an initial validation
step, we evaluate the modulus of the tissue by using Ef and

EXF from the previous section. This results inEtissueðdryÞ �
13:8� 1 GPa and EtissueðwetÞ � 8� 1:5 GPa for the mod-
uli of the dry and wet tissues, respectively, showing a fairly
good agreement with the experimental data (see Table 1 in
Ref. [8]). Furthermore in Fig. 6, where the data from [8] are
normalized, as necessary, by the averaged measured value
of "p, the theoretical overall modulus of the tissue is

calculated for values relevant to the experimental range
of "f, by repeating the above procedure for both wet and

dry conditions. These theoretical estimations are also plot-
ted in Fig. 6, showing good agreement with the experi-
mental data across the entire range of measured "f and

Etissue values. Figure 6 demonstrates the effectiveness of
the back-calculation procedure for evaluating the modulus
of the XF matrix from the deformation measurements, as
applied here on a rather complex two-scale staggered
biological structure.
In conclusion, we have shown that the modulus of the

XF matrix is expected to have a significant effect on the
elastic deformations and the overall stiffness of a staggered
structure. We are able to predict this yet unmeasured
modulus based on experimentally available deformation
data, as demonstrated for parallel-fiber bone tissue.
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