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We describe a new possible route to the metal-insulator transition in doped semiconductors such as Si:P

or Si:B. We explore the possibility that the loss of metallic transport occurs through Mott localization

of electrons into a quantum spin liquid state with diffusive charge neutral ‘‘spinon’’ excitations. Such a

quantum spin liquid state can appear as an intermediate phase between the metal and the Anderson-Mott

insulator. An immediate testable consequence is the presence of metallic thermal conductivity at low

temperature in the electrical insulator near the metal-insulator transition. Further, we show that though the

transition is second order, the zero temperature residual electrical conductivity will jump as the transition

is approached from the metallic side. However, the electrical conductivity will have a nonmonotonic

temperature dependence that may complicate the extrapolation to zero temperature. Signatures in other

experiments and some comparisons with existing data are made.
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Phenomena near the metal-insulator transition (MIT)
in doped semiconductors such as Si:P or Si:B have been
studied extensively for more than three decades [1–4].
Nevertheless, several aspects of the physics, for instance
the detailed critical behavior [4–6], remain mysterious.
In this Letter, we explore and develop the consequences
of a new possible route to the MIT where a quantum
spin liquid insulator appears as an intermediate phase
between the metal and the Anderson-Mott insulator. In
recent years, such a quantum spin liquid Mott insulator
has been observed to intervene between the Fermi liquid
metal and conventional magnetically ordered Mott insu-
lators in a few different clean materials [7–9]. Here, we
study the strongly disordered situation appropriate to
doped semiconductors and describe a variety of experi-
mental consequences.

When P is doped into Si, the extra electron of P forms
a hydrogenlike state with an effective Bohr radius of

about a � 20 �A [1,10]. A simple picture of the doped
semiconductor is as a collection of randomly placed
‘‘hydrogen’’ atoms. The system may then be described
as a half-filled Hubbard model on a random lattice
supplemented by the inclusion of the long-range
Coulomb interaction Vij between the electrons,

H ¼ �X

ij;�

tijðcyi�cj� þ H:c:Þ þU
X

i

ni"ni# þ
X

i�j

Vijninj:

(1)

At low concentrations, the tij � t0e
�rij=a are small, the

on-site U dominates and a Mott insulator of local mo-
ments results. The local moments are coupled antiferro-
magnetically and due to their random placement,
preferentially form singlets with their closest available
neighbor. The resulting random-singlet phase has an

extremely broad distribution of singlet-binding energies,
giving rise to a diverging density of states for low-energy
spin excitations, contributing a divergent coefficient of
heat capacity, � ¼ C=T and spin-susceptibility, � [11].
As the concentration of dopants, n, is increased, even-

tually the typical tij dominates over the U and a diffu-

sive metal is obtained. A continuous phase transition
between metal and insulator occurs at some critical
intermediate concentration, nc, where tij � U [10].

Because of the random placement of dopants, a fraction
of the local moments are very weakly coupled to the
conducting electrons and survive unscreened into the
metallic phase. The diffusive metal appears to be well
described by a ‘‘two-fluid’’ model where the conducting
electrons exist essentially decoupled from a random
fraction of weakly coupled local-moments [1,12]. As in
the insulating phase, these local moments continue to
dominate the low-temperature thermodynamic and mag-
netic properties of the metallic phase but do not appear
to strongly modify its transport properties.
It is natural to ask: What is the fate of the conducting

fluid across the metal-insulator transition? The conven-
tional answer, implicitly adopted by most existing work
[2,3], is that all electron degrees of freedom are localized
by disorder [13], which is perturbatively enhanced by
interactions. In this scenario, shown in Fig. 1(a), decreas-
ing n < nc gives a localized Anderson-Mott insulator
with nonzero average density of states. As n is further
decreased, the system crosses over continuously towards
a correlation driven Mott-insulator of local moments.
In this Letter, we point out a new and conceptually

distinct scenario for the metal-insulator transition in
doped semiconductors. In this scenario, the charged
conducting fluid is localized into a gapless quantum
spin liquid, but the electron thermal transport remains
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diffusive into the weakly insulating regime. There is
growing theoretical and experimental evidence that
such gapless spin liquids occur in clean Mott insulators,
where strong charge fluctuations and frustration prevent
magnetic ordering [7–9]. This experience makes it natu-
ral to ask whether or not one should expect a spin-liquid
phase to form in (uncompensated) doped semiconductors
near the MIT, where charge fluctuations are strong, the
system is at half-filling, and magnetic order is pre-
vented by the random lattice structure, the competition
between antiferromagnetic direct-exchange and random-
sign RKKY exchange, and by quantum fluctuations.

The possibility of a spin-liquid phase in doped semi-
conductors due to multiparticle ring-exchange effects
was previously suggested but not explored in [14].
Also, fractionalization of the random singlet phase of
local moments was suggested [15] as a possible mecha-
nism for unconventional superconductivity in B doped
diamond.

Nature of the possible spin-liquid phase(s).—The pro-
posed spin-liquid phase is most conveniently described
by formally dividing the electron into a bosonic U(1)
rotor ei� that carries the electron charge, and a fermionic
spinon f� that carries the electron spin: ci ¼ ei�ifi�
[16,17]. This description allows extraneous unphysical

states that must be removed by constraining nb;i �P
�f

y
i�fi� ¼ 1 on each site, i. Here, nbi is the number

operator conjugate to �i. The above decomposition has a
U(1) gauge redundancy associated with �i ! �i þ�i

and fi ! e�i�ifi, which manifests itself in the low-
energy effective theory as an emergent U(1) gauge field,
aðr; tÞ [18]. A similar slave-particle description was
previously developed for the weakly disordered two-
dimensional (2D) case for the triangular lattice organics
[19].

Decoupling the hopping term �tijc
y
i;scj;s ¼

�tije
ið�i��jÞfyi;sfj;s in a mean-field approximation and

including gauge fluctuations gives the effective action,
Seff ¼

R
d�ðLb þ LfÞ, with

Lb ¼
X
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where �f
ij ¼ hfyi;sfj;si and �b

ij ¼ heið�i��jÞi are determined

self-consistently. Note that, due to the random placement

of sites, in general
P

shfyi;sfi;si will be spatially varying.

Consequently, even at the mean-field level, the bosons will
experience a random chemical potential; this changes the
universality class of the Bose-Mott transition compared to
the clean case (where hnbi ¼ 1 for every site on both sides
of the Mott transition).
The metallic Fermi-liquid state corresponds to a

superfluid-ordered phase of the bosonic rotors with

hei½�ðxÞþ
R

x
aðyÞ�dy�i � 0, coexisting with a diffusive Fermi

liquid of spinons. In this phase, the emergent gauge field is
gapped by the condensate of charged rotors through the
Anderson-Higgs mechanism, and the rotors and spinons
are ‘‘glued’’ together into ordinary electrons.
Equation (2) also naturally describes a deconfined state

in which the rotors form a Bose glass/Mott insulator, while
the spinons remain diffusive. This results in an exotic
charge insulator with finite density of states for gapless
spin 1=2 excitations. We suggest that this spin-liquid phase
may occur near the MIT for doped semiconductors. In this
scenario, shown in Fig. 1(b), the magnetic properties of
the system change only gradually across the MITat nc1 and
are qualitatively identical in both the metal and insulator.
In particular, we expect that one would still find a de-
coupled fraction of local moments. As these local moments
dominate the low-temperature thermodynamics and mag-
netic properties, the clearest signature of the spin liquid is
metallic thermal conductivity, �� T at low T [8]. While
there has been extensive experimental analysis of the con-
ductivity of doped semiconductors near the MIT, very little
is known about thermal transport.
In the slave-rotor language, the formation of local mo-

ments comes from rare strong fluctuations in disorder that
locally bind the rotor and fermion back into a correlation-
localized electron. We assume that the principal effect of
correlated disorder among the rotor, spinon, and gauge-
field sectors is to produce such local moments, and that
the physics of the remaining nonlocal moment bulk can be
well described by treating disorder separately in each
sector.
In the spin-liquid phase, the emergent gauge field is

deconfined, and in clean systems its fluctuations lead to
singular self-energies for the spinons resulting in non-
Fermi liquid behavior (2D) [20–27] or marginal Fermi-
liquid behavior (3D) [28–30]. For the strongly disordered
doped semiconductors, the inelastic scattering rate for the
spinons from gauge fluctuations scales as ��1

g � T and is

FIG. 1. Two scenarios for the MIT in doped semiconductors.
(a) Conventional picture electron localization transition to
Anderson-Mott insulator, which crosses over continuously to a
pure Mott insulator (indicated by wiggly lines). (b) In the newly
proposed scenario, the transition is to a spin liquid with gapless
fermionic spinon excitations, here the electrical MIT at nc1
occurs separately from the spin and thermal transitions at nc2.
‘‘þLM’’ indicates the fraction of randomly decoupled local
spin-moments that inevitably accompany all phases.
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dominated by the elastic impurity scattering for low T (see
Supplemental Material [31]). Consequently, the low-
energy properties of the disordered spinon Fermi liquid
will be largely unaltered by the emergent gauge field.
Furthermore, the gauge field propagation is strongly
damped by the diffusive spinons, leading to an !� q2

scaling of gauge excitations. This scaling implies that
the gauge-field contribution to thermodynamic quantities
is subdominant compared to the spinon contribution.
For example, the gauge-field specific heat scales as

Ca � T3=2 � Cspinon � T.

In two dimensions, a deconfined phase for the gauge
field requires the presence of extended, gapless fermionic
excitations to suppress instanton configurations [32,33].
In three dimensions, however, a compact U(1) gauge field
may remain deconfined even without extended, gapless
matter [32]. Therefore, in addition to the gapless, thermally
conducting spinon Fermi-surface state described above, it
is also possible to form an insulating state where the charge
degrees of freedom are Mott localized and the spinons are
Anderson-localized by disorder. Such a spinon Anderson
insulator is distinguished (in principle) from the conven-
tional Anderson-Mott insulator by the presence of a gap-
less emergent U(1) gauge field (though experimentally
detecting the emergent gauge field would be challenging).

Generalized phase diagram.—The MIT achieved by
changing n, though experimentally relevant, is conceptu-
ally complicated since disorder and interactions are simul-
taneously affected. It is conceptually simpler to consider
a generalized phase diagram, where disorder strength W
and interaction strength U can be separately adjusted, as in
Fig. 2. Here, we restrict our attention to three dimensions,
half-filling, and non-nested Fermi surfaces (which are not
inherently unstable to magnetic ordering). Furthermore,
we remain agnostic about the particular realization of
disorder, with the expectation that such details will not
alter the qualitative discussion that follows.

We begin by considering various limiting cases. The
(U ¼ 0, W � 0) limit is completely understood [13]:
here, a diffusive Fermi liquid occurs up until a critical
disorder strength beyond which all states near the Fermi-
energy become localized leading to an Anderson insulator
(AI). Each of these phases is known to be stable to infini-
tesimal interactions, and therefore extends at least to small
U. The limit of (U � 0, W ! 1) is also straightforward.
Here the Anderson localized insulator at weak interactions
crosses over continuously to the Mott insulator of local
moments at strong interactions. At T ¼ 0, the local mo-
ments are magnetically ordered in either a random-singlet
or spin-glass phase.

Finally, the line (U � 0,W ¼ 0) is also reasonably well
understood [17], albeit with slightly less confidence. The
clean Fermi liquid survives up until some critical interac-
tion strength, beyond which it becomes a weak Mott-
insulator with a spinon Fermi surface. For large U, the
emergent gauge field undergoes a confinement transition

and antiferromagnetic order develops. Here again, each
of the clean interacting phases is stable to infinitesimally
small amounts of disorder and extends to finite W.
The only distinction being that, for any (U � 0, W � 0),
disorder creates a nonzero density of decoupled local
moments (indicated in Fig. 2 by ‘‘þLM’’).
These considerations greatly constrain the structure of

the generalized phase diagram. Each of the phases at the
boundary are known to extend to finite values ofW and U.
Given the understanding of the boundaries of the phase
diagram, the main issue here is not whether a strongly
disordered fermionic spin liquid could exist, but rather
which particular path through the generic W and U phase
diagram is appropriate to tuning n in doped semiconduc-
tors. Figure 2 depicts an extension of the well-understood
outer boundary of the phase diagram to the interior. While
one can conceive of many intermediate insulating phases at
intermediateU andW, in the slave-rotor language, the only
other natural candidate is the deconfined spinon Anderson
insulator described above.
Thermal conductivity.— In the spin-liquid scenario, the

electrical MIT and thermal MIT occur separately: whereas
electrical conductivity vanishes in the insulating phase,
thermal conductivity remains metallic, scaling as �sp � T

at low temperatures. Since the ever-present concentration
of local moments dominates the low-temperature thermo-
dynamical properties of the system (but contributes only
weakly to transport), linear-T metallic conductivity is the
clearest experimental signature of the spin liquid.
While �sp � T at the lowest temperatures there will be

Altshuler-Aronov–type corrections to � from interactions

and disorder: �AA � T3=2 [34–36]. Also, one expects
a large contribution, �ph from phonons: �ph � T3 [37].

Therefore, to observe the metallic spinon contribution,
it may be necessary to work at very low temperature and
carefully subtract subdominant contributions.
Quantum critical (QC) scaling.— Despite extensive

experimental and theoretical effort, the quantum-critical
(QC) behavior of electrical conductivity remains conten-
tious and poorly understood. The existence of a spin-liquid

FIG. 2. Schematic generalized phase diagram as a function of
disorder strength W and interaction strength U measured with
respect to the typical hopping t. SFS indicates a spinon Fermi
surface.
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phase would have important implications for how QC
scaling should be extracted and interpreted. For T ¼ 0
and n > nc, the system is a Fermi liquid obeying the
Wiedemann-Franz law: �=LT ¼ 	 (where the Lorenz
number L is a constant). Since 	 vanishes at the transition
while �=LT remains nonzero, there must be a discontinu-
ous jump in the T ¼ 0 electrical conductivity at the MIT. In
the slave-rotor description, this jump arises from the Ioffe
and Larkin rule [38] that the electrical resistivity 
 equals
the sum 
 ¼ 
b þ 
f of the resistivities of the bosonic

rotors 
b and spinons 
f respectively. Crossing the MIT at

T ¼ 0, the bosons transition from a superfluid with 
b ¼ 0
to an insulator with 
b ¼ 1. In contrast, the fermionic
contribution, 
f evolves smoothly through the transition,

implying a nonuniversal jump in the zero-temperature
conductivity. Though superficially similar to Mott’s early
proposal [39], this jump in conductivity is unrelated to the
idea of a ‘‘minimum metallic conductivity.’’

Evidence against a discontinuous jump in conductivity
in Si:P comes mainly from pressure tuning studies [5] that
show conductivity dropping sharply but apparently contin-
uously to zero at the MIT. However, determining whether
one is truly accessing the asymptotic behavior near the QC
point is very challenging, and the proper interpretation of
the conductivity scaling remains controversial and poorly
understood [6]. For example, the pressure-tuned experi-
ments extract a conductivity scaling exponent � ¼ 1=2 that
is incompatible with general exponent inequalities for a
metal-insulator transition [40], but could be explained as a
thermally rounded version of the true T ¼ 0 conductivity
jump. In the spin-liquid scenario, as we will argue below,
issues with extrapolating to T ! 0 and n ! nc are further
exacerbated.

Near the quantum critical point (i.e. T � 0, and �n ¼
n� nc � nc), 
bðT; �Þ obeys the quantum critical (QC)
scaling for the disordered Bose-Hubbard model Mott
transition as shown in Fig. 3(a). In the high-temperature
critical regime where T is the dominant perturbation away

from criticality, 
bðTÞ � T�1=z. At lower temperatures

T < T� � ð�nÞz=�, where �n is the dominant perturbation

from criticality 
bðTÞ crosses over from the T�1=z to 0 as
superfluidity develops. Here z is the dynamical exponent
for the disordered Bose-Mott transition with Coulomb
interactions [41].

The spinon contribution to the resistance tends to a
constant at zero temperature, due to the elastic scattering
from disorder. At finite temperature, there will also be

nonconstant contributions to 
f: 
AA � ffiffiffiffi
T

p
, [42] and


ph � T�3–5, from interactions and phonons respectively.

The resulting electrical resistance, 
 ¼ 
b þ 
f, is de-

picted in Fig. 3(b). for various �n near the MIT. The
main feature here, is the resistance upturn due to the nearly
critical fluctuating bosons, which quickly disappears below
T < T� as 
 saturates to a nonuniversal constant set by 
f.

The corresponding T dependence of 	 ¼ 1=
 is shown in
Fig. 3(c). Notice the discontinuous jump in the very-low

temperature conductivity between �n ! 0þ and �n ¼ 0.
As shown in Fig. 3(d), this jump will be rounded at nonzero
temperature, and could escape notice [consider, for ex-
ample, if the lowest achievable temperature were indicated
by the vertical dotted line in Fig. 3(c)].
The spin-liquid scenario outlined here suggests a very

different scheme for extracting the QC behavior of con-
ductivity than that for a conventional localization transi-
tion. Here, one should include only data for which the
resistance saturates to a nearly constant value set by the
spinon contribution. In practice, there is a minimum
achievable value of temperature, Tmin. Consequently, this
saturation region will disappear as the MIT is approached

when �n & T�=z
min. Beyond this point, extrapolations based

on the curvature of 	 would fail to capture the true T ! 0
behavior.
The spin-liquid scenario will also complicate efforts to

extract the critical scaling of 	ðnÞ near the MIT. This diffi-
culty is illustrated in Fig. 3(d), which shows	ðT ¼ 0; nÞ. As
the concentration is decreased in the metal, the conductivity
curves slowly towards an eventual localization transition at
nc2 (which may or may not occur). However, in the present
scenario, the Mott transition of the rotors intervenes at
nc1 > nc2 before the spinons localize. In this case, extrap-
olations of QC scaling based on a conventional Anderson
transition from the metallic side would be misleading.
Discussion.—In summary, we propose an alternative

scenario to the Mott transition in doped semiconductors
where the weakly insulating state is a spin liquid with
fermionic excitations. While such a transition has definite
consequences for the quantum critical scaling of conduc-
tivity near the MIT, such quantum critical behavior is
notoriously difficult to determine.
Other possible signatures of spin-liquid behavior include

subgap optical conductivity [43] in the insulator from
gauge fluctuations and vanishing quasiparticle residue

FIG. 3 (color online). Quantum critical scaling (with z ¼ 1)
[41] of electrical conductivity 	 and linear T coefficient of
thermal conductivity �=TL (L is the Lorenz number) near the
MIT as a function of concentration and temperature.
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approaching the MIT (measurable by tunneling on the
metallic side). However, the former coexists with subgap
conductivity from exciting weakly bound local moments,
and the latter behavior will also be produced by a soft
Coulomb gap (which will develop at the MIT) [44].
Consequently, such probes are indirect, and would require
a detailed quantitative comparison.

Therefore, we suggest that the clearest test for spin-
liquid behavior in doped semiconductors would come
from a careful study of thermal transport near the MIT.
A spinon Fermi liquid would lead to �� T for low T,
which, if observed, would strongly indicate the presence of
gapless fermionic excitations.

M. B. acknowledges support by the Simons Foundation,
J.M. was supported in part by funds provided by the
U.S. Department of Energy and in part by the Alfred P.
Sloan Foundation under cooperative research agreement
DE-FG0205ER41360, and T. S. was supported by NSF
Grant No. DMR-1005434.

[1] R. N. Bhatt, Phys. Scr. T14, 7 (1986); R. N. Bhatt, M. A.
Paalanen, and S. Sachdev, J. Phys. (Les Ulis, Fr.) 49, 1179
(1988).

[2] D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66,
261 (1994).

[3] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57,
287 (1985) and references therein.
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