
Quantum Order by Disorder and Accidental Soft Mode in Er2Ti2O7

M.E. Zhitomirsky,1 M.V. Gvozdikova,1 P. C.W. Holdsworth,2 and R. Moessner3

1Service de Physique Statistique, Magnétisme et Supraconductivité, UMR-E9001 CEA-INAC/UJF,
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Motivated by recent neutron scattering experiments, we derive and study an effective ‘‘pseudodipolar’’

spin-1=2 model for the XY pyrochlore antiferromagnet Er2Ti2O7. While a bond-dependent in-plane

exchange anisotropy removes any continuous symmetry, it does lead to a one-parameter ‘accidental’

classical degeneracy. This degeneracy is lifted by quantum fluctuations in favor of the noncoplanar spin

structure observed experimentally—a rare experimental instance of quantum order by disorder. A non-

Goldstone low-energy mode is present in the excitation spectrum in accordance with inelastic neutron

scattering data. Our theory also resolves the puzzle of the experimentally observed continuous ordering

transition, absent from previous models.
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Introduction.—Exotic low-temperature properties of
magnetic pyrochlore oxides have their origin in the under-
lying frustrated lattice of corner-sharing tetrahedra, which
is combined with diverse crystal-field effects for rare-earth
ions [1]. Initially, the attention was focused on spin-ice
materials Ho2Ti2O7 and Dy2Ti2O7 with Ising-like mo-
ments [2,3] and on the Heisenberg antiferromagnets
Gd2Ti2O7 and Gd2Sn2O7 with large S ¼ 7=2 spins [4,5].
The above pyrochlore compounds exhibit various kinds of
ordered and unusual disordered classical magnetic phases
naturally expected in view of large rare-earth moments.
However, it was gradually recognized that the collective
behavior of low-energy magnetic doublets selected by the
local crystalline electric field (CEF) for other rare-earth
pyrochlores should be generally described by effective
non-Ising pseudo-spin-1=2Hamiltonians, implying signifi-
cant quantum effects [6–9].

Er2Ti2O7 has a special place in the family of magnetic
pyrochlores. It is the only pyrochlore antiferromagnet
found so far that exhibits strong easy-plane anisotropy
with local moments confined to planes orthogonal to the
local h111i axes. Erbium titanate has been extensively
studied in the past and is well characterized experimentally
[10–17]. It orders below Tc ’ 1:2 K, into an unusual
k ¼ 0 noncoplanar antiferromagnetic structure shown in
Fig. 1(a), the so called c 2 state [12,13]. This is rather
surprising given that the geometry of the four local easy
planes also allows coplanar spin arrangements such as the
c 3 state shown in Fig. 1(b), with the same energy as the
noncoplanar state. Moreover, states obtained by reversing a
pair of antiparallel spins in Fig. 1(b) minimize the dipolar
energy [18].

The quantum order by disorder effect [19] was sug-
gested as the selection mechanism for the noncoplanar
spin structure [12] because similar thermal order by

disorder selection [20] indeed occurs in a model of classi-
cal XY moments [12,21–23]. However, the concomitant
transition turns out to be first order, in clear contradiction
with the continuous second order transition observed in
Er2Ti2O7 [10,12]. Another recent experimental result,
which has so far remained unexplained, is the presence
of a quasiacoustic mode in this highly anisotropic antifer-
romagnet, found by inelastic neutron scattering measure-
ments [14].
In this Letter we formulate a minimal spin model for

Er2Ti2O7 which accounts for this entire body of experi-
mental results: quantum order by disorder stabilizes the
observed ground state, with the low-energy mode in inelas-
tic neutron scattering a remnant of the lifted degeneracy;
meanwhile, classical Monte Carlo simulations reproduce
the continuous transition. Using this model, we analyze
theoretically various physical effects such as the ener-
getic selection due to quantum fluctuations, spin-wave
results for the excitation spectrum, and the nature of the
finite-temperature phase transition studied by classical
Monte Carlo simulations. We present various estimates of

(b)(a)

FIG. 1 (color online). Possible q ¼ 0 spin structures of the XY
pyrochlore antiferromagnet in zero applied field: c 2 state (a) and
c 3 state (b).

PRL 109, 077204 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

17 AUGUST 2012

0031-9007=12=109(7)=077204(5) 077204-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.077204


parameters in the model Hamiltonian, which has an analo-
gous form—but opposite sign—to a dipolar interaction.

Model.—Free Er3þ ions (J ¼ 15=2, gJ ¼ 6=5) have

large magnetic moments �¼gJ�B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJþ1Þp ¼9:58�B.

A somewhat reduced value � ¼ 8:9�B found in
Er2Ti2O7 from high-temperature susceptibility measure-
ments [11] reflects a partial quenching of the angular
momentum by the CEF. According to crystal-field analysis
[12,24], the ground-state Kramers doublet j�i of Er3þ ions
is strongly anisotropic:

h�jJzj�i¼�1

2
�z; h�jJ�jþi¼hþjJþj�i¼�?; (1)

with �? ¼ 6:35 and �z ¼ 0:202. Neglecting higher CEF
levels, one can use the operator equivalence

Jz ¼ �zS
z; Jx;y ¼ �?Sx;y; (2)

where S� are components of an S ¼ 1=2 pseudospin de-
fined in the subspace of the lowest doublet. Note that
the operator relations [Eq. (2)] are satisfied in the local
coordinate frame for each magnetic ion.

In order to discuss possible forms of the effective
Hamiltonian, it is instructive first to assume isotropic ex-
change between the full magnetic moments, Ji � Jj, and to

project the nearest-neighbor (NN) exchange Hamiltonian
onto the subspace of lowest CEF doublets with the help of
Eq. (2) [25]. Terms with SziðjÞ are further suppressed by a

small factor �z=�? � 10�2 and are neglected below. The
remaining XY interactions are generally characterized by
two parameters [26]:

Ĥ ¼ X
hiji

½JS?
i � S?

j þ J aðS?
i � r̂ijÞðS?

j � r̂ijÞ�; (3)

where r̂ij ¼ ðri � rjÞ=jri � rjj. The first term is the iso-

tropic exchange between transverse components of NN
spins confined to the local f111g planes. The second term
represents bond-dependent exchange anisotropy. It has a
pseudodipolar form but both signs of J a are allowed by
symmetry. Although the above projection procedure yields
vanishing J a, the in-plane exchange anisotropy may be
generated by virtual excitations into higher CEF levels
[25] or into states with different occupancy on rare-earth
ions [7]. As we shall see below, it is essential to include J a

in the effective Hamiltonian [Eq. (3)], since quantum fluc-
tuations are singular in the J a ! 0 limit.

Ground-state selection.—The classical ground states of
the Hamiltonian [Eq. (3)] with J a ¼ 0 satisfying the con-
straint

P
tetS

?
n ¼ 0 form an infinite but nonextensive set of

states, producing planes of zero-energy modes in the exci-
tation spectrum [22]. Finite anisotropy J a � 0 almost
eliminates this degeneracy. For J a > 0, we find that
the classical energy [Eq. (3)] is minimized for a subset of
k ¼ 0 states. Two of them, the so called c 2 and c 3 states
[13], are shown in Fig. 1, while other spin configurations
are constructed as their linear combination:

S nð’Þ ¼ Sðx̂n cos’þ ŷn sin’Þ; n ¼ 1; . . . ; 4; (4)

such that ’ ¼ 0 (�=2) corresponds to c 2 (c 3), respec-
tively. Thus, instead of an infinite number of variables, the
classical ground states of Eq. (3) for J a > 0 are parame-
terized by one global continuous angle, ’.
The spin states c 2 and c 3 form a basis of the two-

dimensional irreducible representation E of the tetrahedral
point group. They transform as c 2 � 3z2 � r2 and c 3 �
x2 � y2 under cubic rotations. Consequently, the two spin
configurations have the same mean-field energies for any
extension of the Hamiltonian [Eq. (3)], involving only
bilinear spin-spin interactions (e.g., further-neighbor ex-
change or long-range dipolar interactions). The mean-field
degeneracy may be lifted only by interactions of sixth
order in spin components [27], though these are not ex-
plicitly present in the effective Hamiltonian since S ¼ 1=2.
Nevertheless, such interactions may be generated dynami-
cally by thermal or quantum fluctuations.
To study the effect of quantum fluctuations on the

remaining continuous degeneracy we use harmonic spin-
wave theory. For this, spin operators in the effective
Hamiltonian [Eq. (3)] are assumed to have an arbitrary
spin S and the usual 1=S expansion is applied, substituting
S ¼ 1=2 in the final expressions. This standard approach
yields the following results.
Magnon excitation energies for an arbitrary classical

ground-state [Eq. (4)] can be expressed as

"ðnÞk ¼ JS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ jaÞ2 þ 2ð2þ jaÞ�ðnÞ

k

q
; (5)

where, ja ¼ J a=J and �ðnÞ
k are four eigenvalues of the

matrix Ck,

Ck ¼
0 cþxy cþyz cþxz
cþxy 0 c�xz c�yz
cþyz c�xz 0 c�xy
cþxz c�yz c�xy 0

0
BBB@

1
CCCA; (6)

with c�xy ¼ txy cosðkx � kyÞ=4; . . . , and

txy ¼ 4

3
sinð’� �=3Þ sinð’þ �=3Þ � ja

3
sin2’;

tyz ¼ � 4

3
sin’ sinð’� �=3Þ � ja

3
sin2ð’þ �=3Þ;

txz ¼ � 4

3
sin’ sinð’þ �=3Þ � ja

3
sin2ð’� �=3Þ:

(7)

The quantum correction to the ground-state energy nor-
malized per spin is

�Eg:s: ¼ 1

8

X4
n¼1

Z d3k

VBZ

"ðnÞk � 1

2
JSð2þ jaÞ; (8)

where VBZ is the Brillouin zone volume. �Eg:s:ð’Þ is

shown in the inset of Fig. 2 for S ¼ 1=2, exhibiting a clear
minimum for the noncoplanar c 2 state (’ ¼ 0; �=3; . . . )
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for any value of ja. Hence quantum fluctuations, like
thermal fluctuations, select the c 2 state from the ensemble
of classical ground states giving an example of quantum
order by disorder. A similar calculation for isotropic
exchange ja ¼ 0 was recently presented in Ref. [23].
However, as shown below, quantum fluctuations become
singular and essentially nonperturbative in the isotropic
case and may completely destroy the long-range magnetic
order.

Harmonic spin-wave theory also yields the leading
quantum correction to the value of the ordered moment
hSi. Most conveniently this can be done with the help of
a fictitious staggered field hs ! 0. The corresponding
expression for �S ¼ S� hSi is

�S¼1

8

X4
n¼1

Z d3k

VBZ

2þjaþ�ðnÞ
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2þjaÞ2þ2ð2þjaÞ�ðnÞ
k

q �1

2
: (9)

The spin reduction �S in the ordered c 2 state (Fig. 2)
diverges logarithmically as ja ! 0. This is a result of the
effective dimensional reduction to one dimensional behav-
ior, due to the planes of zero-energy modes in the magnon
dispersion "k in the isotropic case [22]. However, a small
anisotropy of ja ’ 0:05 already cuts off the singularity and
restores the perturbative nature of the quantum correction.
The measured ordered moment of � ¼ 3:2�B in Er2Ti2O7

[13] indicates a 16% renormalization from the nominal
value �0 � 3:8�B for the Er3þ ground-state doublet [12].
This gives an estimate of ja � 0:3� 0:5. The large uncer-
tainty is related to the unknown precision for �0, which
cannot be measured directly, but our analysis is consistent
with a perturbation of considerable size.

Excitation spectrum.—With both the Hamiltonian and
its ground state in hand, we compute the spin-wave spec-
trum in Er2Ti2O7. The c 2 magnetic structure allows six
different domains with ’ ¼ �n=3. We choose ’ ¼ 0

[pictured in Fig. 1(a)] with spins pointing along the
[� 1, �1, �2] cubic directions. Analytical expressions
for magnon energies can be derived from Eq. (5) for a
few symmetry directions in the Brillouin zone. For
k ¼ ðq; 0; 0Þ, the four branches are
�
"k
JS

�
2 ¼ ð2þ jaÞ

�
2þ ja � 2 cos

q

4
� 1

2
ja

�
1þ cos

q

4

��
:

(10)

Along the k ¼ ð0; 0; qÞ line, the two dispersive branches
are expressed as

"k ¼ JS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ jaÞja½1� cosðq=4Þ�

q
; (11)

while the two other modes remain dispersionless with

"k ¼ JS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2þ jaÞð4þ jaÞ

p
.

The characteristic low-energy feature of the calculated
spectra is a gapless mode with acoustic dispersion "k � ck
for k ! 0. This remarkably reproduces a variety of experi-
mental results for Er2Ti2O7 including the T3-dependence
of the heat capacity [10], the inelastic neutron data [14],
and the electron spin resonance measurements [15]. The
presence of the gapless branch in the harmonic approxi-
mation is directly linked to the classical degeneracy of the
model [Eq. (3)] and is, therefore, accidental in the sense
that is not related to any symmetry of the magnetic system.
Hence, a finite gap will generically be produced by quan-
tum fluctuations in higher orders of the spin-wave theory.
Corresponding calculations are rather cumbersome and
are not attempted here. We only remark that the generated
quantum gap should depend on the curvature of �Eg:s:ð’Þ
in the vicinity of its minimum. Since the minimum be-
comes more shallow with increasing anisotropy (see the
inset of Fig. 2), we expect that for ja � 0:5 the actual gap
may be rather small.
Figure 3 shows the dispersion of four magnon branches

in the [100] direction in comparison with the inelastic
neutron scattering data of Ruff et al. [14] scanned from
their Fig. 4. We find particularly good agreement between
theory and experiment for the following values of the
microscopic parameters: J ¼ 0:28 meV and ja ¼ 1,
with corresponding curves plotted by solid lines. Magnon
energies for J ¼ 0:33 meV and ja ¼ 0:5, a value ex-
tracted from the reduced moment (see above), are shown
by dashed lines. While the low-energy branch is fitted
equally well, a larger ja is favored by the position of the
lower gap � � 0:38 meV.
We can extract further information about the micro-

scopic parameters from values of the critical field between
the antiferromagnetic phase and the polarized paramag-
netic state [14–17]. The high-field polarized states are
particularly simple for field orientations along the [100]
and [110] axes. Repeating the above spin-wave calcula-
tions for H k ½110� we obtain the critical field from the
vanishing gap in the magnon spectrum

0
ϕ/π
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-0.15

∆E
g.

s.

0
ja

0

0.1

0.2

S
S

0.0

0.2

0.5

ja = 1.0

0.40.2

10.80.60.40.2

FIG. 2 (color online). Inset: the ground-state energy in units of
J for degenerate classical configurations parameterized by the
angle ’; see Eq. (4). Main panel: the quantum spin reduction in
the noncoplanar state c 2 versus the bond-dependent exchange
anisotropy parameter ja ¼ J a=J .
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g?�BH
½110�
c ¼ J S

�
4þ 4ffiffiffi

3
p þ ja

�
2ffiffiffi
3

p � 1

��
; (12)

where g? ¼ gJ�? � 7:6. The dependence of Eq. (12) on
ja is very weak and from the extrapolated T ¼ 0 value

H½110�
c ’ 1:8 T [14–16], we deriveJ ’ 0:25 meV, which is

consistent with the estimate based on neutron data.
Additional measurements of the excitation spectrum
and/or the angular dependence of the critical field Hc at
low temperatures should allow a more precise identifica-
tion of the microscopic parameters of the model [Eq. (3)] in
the case of Er2Ti2O7.

Finite-temperature transition.—We finally consider the
nature of the ordering transition in the XY pyrochlore
antiferromagnet with the bond-dependent exchange anisot-
ropy. Since the original quantum model [Eq. (3)] remains
intractable for numerical investigation, we study instead a
simplified version of Eq. (3) with spins represented by

classical unit vectors. The classical Monte Carlo simula-
tions were performed on periodic lattices ofN ¼ 4L3 spins
with linear sizes L ¼ 6� 12 using the Metropolis algo-
rithm with �107 Monte Carlo steps. The temperature
dependence of the sublattice magnetization mq¼0 for anti-

ferromagnetic ordering with zero wave vector is shown in
Fig. 4 for three values of ja. For the model with isotropic
exchange, ja ¼ 0, a clear jump appears at Tc=J ¼
0:110ð1Þ. However, already a small exchange anisotropy
ja ¼ 0:1 changes the behavior of mq¼0ðTÞ to continuous.

This is confirmed by the temperature dependence of the
fourth-order Binder cumulant

U4 ¼
hm4

q¼0i
hm2

q¼0i2
: (13)

According to finite-size scaling theory, Binder cumulants
for clusters with different linear sizes L cross at the critical
point where spin-spin correlations exhibit a power-law
decay. The crossing point Tc=J ¼ 0:445ð2Þ for ja ¼ 0:5
(Fig. 4) gives an accurate estimate for the transition point
in this case. In our Monte Carlo simulations we also
investigated various Potts-type order parameters, which
distinguish between the noncoplanar c 2 and the planar
c 3 spin structures. As T ! 0 there is a clear selection of
the c 2 configuration. However, at higher temperatures the
spins strongly fluctuate, restoring at T ! Tc the continuous
XY degeneracy parameterized by the angle ’ in Eq. (4).
In conclusion, we have proposed a simple quantum

model for the XY pyrochlore antiferromagnet Er2Ti2O7,
which includes bond-dependent in-plane exchange anisot-
ropy of strength ja. We show that the order by disorder
selection occurring for ja ¼ 0 is maintained at both the
quantum and classical levels for perturbations up to at least
the strength of the isotropic exchange. The exchange an-
isotropy also reproduces the observed second-order tran-
sition found in Er2Ti2O7 in thermodynamic measurements.
Further work is planned to investigate the field evolution of
the antiferromagnetic state and the role of the long-range
part of the dipolar interactions, but it is worth noting here
that the perturbation is of the same form, but of opposite
sign to the dipolar interaction for NN pairs of spins. As
noted by Stasiak et al. [23], an exchange anisotropy of this
kind can therefore overcome the NN part of the dipolar
interaction. In addition, the long-range part of the dipolar
interaction loses importance as the tetrahedral units have
no net magnetic moment in the ground state. These obser-
vations provide a possible explanation as to why the dipo-
lar effects appear to be absent in Er2Ti2O7.
The fact that our theoretical analysis with the single

parameter ja is in agreement with many experimental
features of Er2Ti2O7 strongly supports the above picture
and in the process provides strong evidence that the
ordering transition and the stability of the experimentally
observed noncoplanar magnetic structure is indeed a re-
markable experimental realization of the order by disorder

0 0.5 1 1.5 2

[q 0 0]

0
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0.4
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Ruff et al. (2008)

FIG. 3 (color online). Zero-field dispersion of magnons in
Er2Ti2O7 along the [100] direction. Wave vectors are measured
in units of 2�. Solid lines are calculated for J ¼ 0:28 meV and
ja ¼ 1, while dashed lines are for J ¼ 0:33 meV and ja ¼ 0:5.
Open squares are experimental data points [14].
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FIG. 4 (color online). Main panel: temperature dependence of
the sublattice magnetization for the classical XY pyrochlore
antiferromagnet with in-plane anisotropic exchange on periodic
cluster with L ¼ 12. Inset: the fourth-order Binder cumulant for
several lattice sizes at fixed ja ¼ 0:5.
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mechanism [12]. A consequence of this is the unique
appearance of a non-Goldstone acoustic magnon branch
with a very small gap.
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Note added—Recently, we became aware of a related
preprint by Savary et al. [28].
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