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Predictions of the anisotropic magnetic susceptibility � below the antiferromagnetic (AFM) ordering

temperatures TN of local moment Heisenberg AFMs have been made previously using molecular field

theory (MFT) but are very limited in their applicability. Here a MFT calculation of �ðT � TNÞ is

presented for a wide variety of collinear and noncollinear Heisenberg AFMs containing identical

crystallographically equivalent spins without recourse to magnetic sublattices. The results are expressed

in terms of directly measurable experimental parameters and are fitted with no adjustable parameters to

experimental �ðT � TNÞ data from the literature for several collinear and noncollinear AFMs. The

influence of spin correlations and fluctuations beyond MFT is quantified by the deviation of the theory

from the data. The origin of the universal �ðT � TNÞ observed for triangular lattice AFMs exhibiting

coplanar noncollinear 120� AFM ordering is clarified.

DOI: 10.1103/PhysRevLett.109.077201 PACS numbers: 75.30.Gw, 75.10.Jm, 75.40.Cx, 75.50.Ee

Introduction.—Magnetic susceptibility � measurements
versus temperature T have been used for a century to
obtain important information about the magnetic proper-
ties of materials. The Weiss molecular field theory (MFT)
has been instrumental in interpreting the �ðTÞ data in the
paramagnetic state above the long-range magnetic order-
ing temperature TN of local magnetic moment antiferro-
magnets [1,2] (AFMs) via the Curie-Weiss (CW) law
� ¼ C

T��p
, in which the magnitude of the local moments

is contained in the Curie constant C and the nature and
strengths of their interactions in the Weiss temperature �p.

MFT has also been used extensively for comparisons
with experimental data of its predictions for the ordered
magnetic moment and magnetic heat capacity versus T in
the ordered state of AFMs at T < TN. Thus MFT is a
primary tool to identify important characteristics of local
moment AFMs.

In contrast, very few comparisons have been made of
experimental anisotropic �ðT < TNÞ data for AFMs with
the predictions of MFT even for collinear AFMs where the
ordered moments ~�i are aligned along the same easy axis
[1–3]. Here we provide simple MFT expressions to fit
experimental �ðT < TNÞ data for ordered AFMs contain-
ing identical crystallographically equivalent spins interact-
ing by Heisenberg exchange for arbitrary sets of exchange
constants. The theory treats collinear and planar noncol-
linear AFM structures on the same footing without the use
of magnetic sublattices. The results are expressed in terms
of independent experimentally measurable quantities and
are used to fit with no adjustable parameters representative
experimental�ðT < TNÞ data from the literature for several
collinear and noncollinear AFMs. The fits can quantify the
influence of spin correlations and fluctuations beyondMFT
on �ðT < TNÞ, and can also help to elucidate the AFM
structures and exchange interactions if these are uncertain
or unknown.

Using MFT, Van Vleck calculated in 1941 the aniso-
tropic �ðT � TNÞ for magnetic fields H applied parallel
(�k) and perpendicular (�?) to the easy axis of collinear

AFMs with only nearest-neighbor Heisenberg interactions
between spins on two distinct interpenetrating ‘‘bipartite’’
sublattices [4]. Yoshimori carried out MFT calculations of
�ðT � TNÞ in 1959 for the special case of a planar non-
collinear AFM ‘‘proper screw helix’’ magnetic structure
that he proposed forMnO2, [5,6] as shown schematically in
Fig. 1. These MFTs are very restricted in their applicability
and have been rarely used to fit experimental �ðT � TNÞ
data over the past five decades.
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FIG. 1 (color online). A ‘‘proper screw helix’’ noncollinear
AFM structure proposed for MnO2 [5]. The net interplanar
exchange interactions Jz1 and Jz2 in the generic J0-Jz1-Jz2 model
are indicated. A ‘‘cycloidal helix’’ AFM structure [5] occurs
when the wave vector k of the helix is in the xy plane of the
magnetic moments.
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Theory.—Here we consider identical crystallographi-
cally equivalent spins interacting by Heisenberg exchange,
with no anisotropy present except that due to an infinitesi-
malH. The part Ei of the average energy of the system that
is associated with interactions of ~�i with H and with its
neighbors ~�j is Ei ¼ 1

2g2�2
B

~�i �
P

jJij ~�j � ~�i �H, where

Jij is the Heisenberg exchange coupling between ordered

magnetic moments ~�i and ~�j, and a positive Jij corre-

sponds to AFM coupling. Using MFT, [1] one obtains

the CW law for T � TN, where C ¼ Ng2�2
BSðSþ1Þ
3kB

, �p ¼
� SðSþ1Þ

3kB

P
jJij and TN ¼ � SðSþ1Þ

3kB

P
jJij cos�ji, N is the

number of spins, g is the g factor, �B is the Bohr magne-
ton, S is the spin, kB is Boltzmann’s constant and �ji are

the angles between ~�i and its neighbors ~�j in the AFM-

ordered state. We rewrite the CW law for T � TN in
dimensionless form as

�ðtÞTN

C
¼ 1

t�f
; t� T

TN

; f� �p
TN

¼
P

j Jij
P

j Jij cos�ji

: (1)

Below TN, the � with H perpendicular to the ordered
moment axis or plane for collinear or planar noncollinear
AFMs, respectively, is given in general by MFT as [1]

�?ðT � TNÞTN

C
¼ �ðTNÞTN

C
¼ 1

1� f
ðt � 1Þ: (2)

For collinear AFMs, a field applied below TN along the
easy axis just changes the magnitude of an ordered moment
without rotating it and in MFT we obtain

�kðtÞTN

C
¼ 1

�� � f
; ��ðtÞ ¼ ðSþ 1Þt

3B0
Sðy0Þ

; (3)

where B0
Sðy0Þ � dBSðyÞ=dyjy¼y0 , BSðyÞ is the Brillouin

function, [1] y0 ¼ 3 ��0

ðSþ1Þt , ��0 ¼ �0

�sat
, �sat ¼ gS�B, and

the magnitude of the ordered moment in zero field ��0ðtÞ
is calculated numerically from ��0 ¼ BSðy0Þ [1]. From
Eqs. (2) and (3) one obtains

�kðTÞ
�ðTNÞ

¼ 1� f

�� � f
: (4)

By Taylor expanding B0
Sðy0Þ ¼ ðSþ 1Þ=3 for y0 ! 0, one

obtains ��ðt ! 1Þ ¼ 1 and
�kðT!TNÞ
�ðTNÞ ¼ 1, as required. For

T ! 0, B0
Sðy0Þ ! 0, �� ! 1 and �k ! 0. The parameters

in Eq. (4) required to fit experimental �kðT � TNÞ data are
just f, S, TN, and �ðTNÞ, which can usually be easily
independently determined from experiment or estimated.
Setting f ¼ �1 in Eq. (3) reproduces Van Vleck’s 1941
prediction for the special case of bipartite collinear AFMs
with only nearest-neighbor interactions [4].

For planar noncollinear AFMs, one must take into ac-
count via MFT the field-induced changes in both the mag-
nitudes and directions of the ordered moments to first order
in H, and we then obtain the in-plane (xy) susceptibility

�xyðT � TNÞ
�ðTNÞ

¼ ð1þ �� þ 2fþ 4B�Þð1� fÞ
2½ð�� þ B�Þð1þ B�Þ � ðfþ B�Þ2� ; (5)

where

B� ¼ �
P

j Jijcos
2�ji

P
j Jij cos�ji

: (6)

Using ��ðt!1Þ¼1, Eq. (5) gives
�xyðT!TNÞ

�ðTNÞ ¼1, irrespective

of the value of B�, as required, whereas limt!0B
0
Sðy0Þ ! 0

and �� ! 1 yield from Eq. (5)

�xyðT ¼ 0Þ
�ðTNÞ

¼ 1� f

2ð1þ B�Þ : (7)

The parameter B� is the only new parameter specifically
associated with noncollinear AFMs, is not generally di-
rectly measurable, but can be evaluated if the AFM
structure and an exchange interaction model are available.
Alternatively, it can be used as a fitting parameter to provide
such information.
On the other hand, the value of B� can be experimentally

determined within a minimal generic J0-Jz1-Jz2 model [6]
for helical or cycloidal AFM structures as in Fig. 1 on any
Bravais spin lattice. In this model, one sums the exchange
interactions of a given magnetic moment with all other
moments in the same ferromagnetically aligned layer per-
pendicular to the helical or cycloidal wave vector k and
calls that sum J0, and similarly for nearest- and next-
nearest-layer interactions Jz1 and Jz2, respectively, as in-
dicated in Fig. 1. The same theory is applicable to isolated
spin chains where J0 ¼ 0. Then the k of the helix or
cycloid is obtained in terms of the exchange constants by
minimizing the exchange energy to be [5,6]

cosðkdÞ ¼ � Jz1
4Jz2

; (8)

where k ¼ jkj and d is the distance between layers. kd is
the turn angle between adjacent moments along the helix
or cycloid axis (Fig. 1) and is experimentally measurable
by magnetic x-ray or neutron diffraction techniques. Using
Eq. (8) one can express B� in Eq. (6) as

B� ¼ 2ð1� fÞ cosðkdÞ½1þ cosðkdÞ� � f: (9)

Using Eq. (9), one can now write �xyðT � TNÞ=�ðTNÞ in
Eq. (5) completely in terms of independently measurable
quantities. Furthermore, using Eqs. (7) and (9) one obtains

�xyðT ¼ 0Þ
�ðTNÞ

¼ 1

2½1þ 2 cosðkdÞ þ 2cos2ðkdÞ� : (10)

The expression for �xyðT ¼ 0Þ=�ðTNÞ obtained in 1959 by
Yoshimori [5] for the special case of the helix in MnO2 is
consistent with the general result (10).
Using Eq. (10), the �xyðT ¼ 0Þ=�ðTNÞ is plotted versus

kd in Fig. 2(a). The predicted behavior has a surprising
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nonmonotonic dependence on kd with a maximum at
kd ¼ 2�=3 with a value of unity. Using Eqs. (5) and (9),
�xyðT � TNÞ and its dependences on kd and f are shown in

Fig. 2(b), where �xy is seen to be strongly dependent on T

and f except for kd ¼ 2�=3 ¼ 120� for which it is inde-
pendent of T and f. One can prove that this result for
kd ¼ 2�=3 is obtained within the J0-Jz1-Jz2 model for
any value of S. Then using Eq. (2), our MFT makes the
remarkable universal prediction for helical or cycloidal
120� AFM ordering that �ðT � TNÞ=�ðTNÞ is isotropic
and independent of S, f and T for T � TN. The same result
is obtained for other AFMs with 120� ordering and there-
fore a helical or cycloidal AFM structure is not required
[see also Fig. 5(a) below].

If only the six nearest-neighbor interactions J occur in a
single triangular lattice layer exhibiting 120� ordering in
MFT, one obtains from Eqs. (1) and (2) that �ðT ¼ 0Þ=
ðNg2�2

BÞ ¼ 1=ð9JÞ, independent of S. For the classical
(S ! 1) isolated triangular layer Heisenberg AFM, one
obtains the same isotropic value [7,8]. Classical
Monte Carlo simulations for a triangular spin lattice layer
indicate that � is isotropic and also nearly independent of T
at low T [9]. Our MFT result for kd ¼ 2�=3 thus signifi-
cantly extends the previous calculations for single classical
triangular lattice layers to finite quantum spins S and long-
range AFM ordering of coupled layers.

Fits of experimental data.—As shown in Eq. (2), �? is
independent of T below TN with the value �ðTNÞ, so no
explicit fitting of experimental data is required.
We first present fits by Eq. (4) of �kðTÞ data for the

collinear AFMs GdNiGe3, an orthorhombic compound
containing nonmagnetic Ni atoms and Gdþ3 spins
S ¼ 7=2, [10] and MnF2 with the primitive tetragonal
rutile structure containing Mnþ2 spins S ¼ 5=2 [11]. The
anisotropic �ðTÞ data at low T for single crystals of
GdNiGe3 (Ref. [10]) and MnF2 (Refs. [12–14]) and the
corresponding fits of the �kðT � TNÞ data by Eq. (4) with

no adjustable parameters are shown in Fig. 3. The fit to the
�kðT � TNÞ a-axis data ofGdNiGe3 with S ¼ 7=2 is better
than the fit to the corresponding c-axis data of MnF2 with
S ¼ 5=2. This comparison agrees with expectation, be-
cause MFT does not include the influence of quantum
spin fluctuations which increase as S decreases. This sug-
gests that a comparison of such MFT fits with experimental
data is a quantitative diagnostic for the occurrence at
T � TN of spin fluctuations and correlations beyond MFT.
As an example of a noncollinear planar AFM, primitive

tetragonalGdB4 consists of crystallographically equivalent
Gd spins 7=2 with the AFM structure shown in Fig. 4(a)
and with the ordered moments oriented in the [110] and
equivalent directions [15]. The magnetic and chemical unit
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FIG. 2 (color online). (a) �xyðT ¼ 0Þ versus kd [Eq. (10)] and
(b) �xy versus T and f [Eqs. (5) and (9)] for helical or cycloidal

AFMs with S ¼ 7=2 within the generic J0-Jz1-Jz2 MFT model.
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FIG. 3 (color online). Anisotropic �ðTÞ of single crystals of
(a) GdNiGe3 (Ref. [10]) and (b) MnF2 [12,13]. In (b), the �p
value was taken from Ref. [14]. The corresponding �kðTÞ data
are fitted by the MFT prediction in Eq. (4) (solid red curves).
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cells are the same. Anisotropic �ðTÞ data at low T are
shown in Fig. 4(b) [16]. The fit of the �abðT � TNÞ data by
Eq. (5) with no adjustable parameters is shown by the solid
blue curve using parameters in the figure. The value of B�
was estimated from Eq. (7) using the experimental values
[16] of f and �abðT ! 0Þ=�ðTNÞ. The deviation of the fit
from the data is similar to that for GdNiGe3 in Fig. 3(a),
suggesting a common mechanism for it.

We now test our universal prediction for noncollinear
120� AFM structures that �ðT � TNÞ=�ðTNÞ is isotropic
and independent of f, S and T for 0 � T � TN with the
value of unity, which does not require explicit fits. The
hexagonal compound �-YMnO3 contains a triangular lat-
tice of crystallographically equivalent Mnþ3 spins
S ¼ 2 and exhibits 120� coplanar ordering in the ab plane
[17]. As in GdB4, the magnetic and chemical unit cells are
the same. Anisotropic �ðTÞ data for this compound are
shown in Fig. 5(a) [18]. The �ðT � TNÞ data parallel and
perpendicular to the ab plane are nearly isotropic and
independent of T. Similar �ðT � TNÞ results have been
obtained for many triangular lattice AFMs with 120�
helical or cycloidal ordering, such as the S ¼ 3=2 com-
pounds LiCrO2, [19] VF2 and VBr2 [20–22]. Our MFT

prediction is even strongly confirmed by the �ðT � TNÞ
data [23] in Fig. 5(b) for the slightly monoclinically dis-
torted triangular spin lattice in RbCuCl3 containing highly
quantum Cuþ2 spins-1=2 exhibiting cycloidal AFM order-
ing within the hexagonal ab plane [24]. The cycloid axis
is in the hexagonal [110] direction with a turn angle
kd ¼ 108�, [24] close to the undistorted triangular lattice
value of 120�. The reason that the MFT prediction is
accurate even for S ¼ 1=2 deserves further investigation.
In summary, a generic molecular field theory of the

anisotropic �ðT � TNÞ was formulated for local moment
Heisenberg AFMs that is widely applicable to collinear and
planar noncollinear AFM structures. The comparisons of
our results with experimental anisotropic �ðT � TNÞ data
for single crystals in Figs. 3–5 with no adjustable parame-
ters demonstrate that such analyses constitute a powerful
probe of the AFM structure and spin interactions. Our
results will also be useful for analyzing �ðT � TNÞ data
for polycrystalline samples. An important avenue for future
research is to further study the applicability, accuracy
and limitations of our MFT predictions. The present work
is a stepping stone for additional MFT calculations of
�ðT � TNÞ that could include various types of anisotropies.
The author is grateful to A. Honecker and

M. E. Zhitomirsky for insights about the � of triangular
lattice AFMs and to S. L. Bud’ko and H. Tanaka for
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FIG. 5 (color online). �ðTÞ for the triangular lattice AFMs
(a) hexagonal YMnO3 (Ref. [18]) with Mnþ3 spins S ¼ 2 and
kd ¼ 120� ordering in the ab plane [17] and (b) RbCuCl3 with
Cuþ2 spins S ¼ 1=2 [23].
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FIG. 4 (color online). (a) AFM structure of GdB4 [15].
(b) Magnetic susceptibility � versus temperature T for a single
crystal of GdB4, [16] together with the fit of the �abðT � TNÞ
data by Eq. (5) using S ¼ 7=2 and the experimentally deter-
mined parameters f and B� in the figure.
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