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We observe an apparent singularity in the electronic properties of the Anderson model of localization

with bounded diagonal disorder, which is clearly distinct from the well-established mobility edge

(localization-delocalization transition) that occurs in dimensions d > 2. We present results of numerical

calculations for Anderson’s original uniform (box) distribution of on-site disorder in dimensions d ¼ 1, 2,

and 3. To establish this hitherto unreported behavior, and to understand its evolution with disorder, we

contrast the behavior of two different measures of the localization length of the electronic wave

functions—the averaged inverse participation ratio and the Lyapunov exponent. Our data suggest that

Anderson’s model exhibits richer behavior than has been established so far.
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The Anderson model of localization, formulated over
fifty years ago, has been the foundation on which our
understanding of the effects of disorder on electronic sys-
tems has been built. In his original paper [1], Anderson
demonstrated the existence of localized states in lattice
systems in three dimensions with sufficient disorder.
Subsequently, it was shown that both in one [2] and two
dimensions [3], electron states become localized for
arbitrary small potential disorder. Wegner [4] mapped the
localization problem on the sigma model, opening the
doors for a systematic study of the localization transition
in 2þ � dimensions for models with disorder belonging to
different symmetry classes [5]. Sophisticated numerical
techniques were developed to address the problem of
localization [5–7], and study not only critical exponents,
but also multifractality of the wave functions, as well as
eigenvalue statistics at the critical point. A 50-year com-
memorative volume has recently appeared [8].

Following Anderson’s paper, there was concern that the
mobility edge, signaling the transition from localized to
extended states may be accompanied by a singularity of the
density of states (DOS). However, a pioneering work by
Edwards andThouless [9] proved that theDOS in the original
Andersonmodel (with a uniform but bounded distribution of
disorder) was analytic in a large region near the band center
for any value of the disorder, and thus, by implication, there
was no singularity at the Anderson transition at these ener-
gies.Wegner [4] showed that forGaussian disorder, therewas
no singularity in the DOS at any energy for any nonzero
disorder. Since the localization transition was present with
Gaussian disorder as well, this laid to rest any speculation
about the occurrence of any singular behavior of the DOS at
the localization transition.

The lack of singularities other than the divergence of the
localization length has given rise to the popular belief that
properties are quite smooth elsewhere. However, for the 1D
Anderson model, it was shown [10] that the weak disorder

expansion of the Lyapunov exponent is nonanalytic at band
center and other commensurate fillings; a comprehensive
study has recently been done [11]. Here we provide evi-
dence of a rather prominent singularity of a different kind.
In particular, we find that in Anderson’s original model,
outside the bounds of Edwards and Thouless [9], an ap-
parent singular behavior of electronic eigenstates, as mea-
sured by the ensemble averaged inverse participation ratio
(IPR), and possibly of the DOS itself, which arises from an
abrupt transition into a regime of resonant states. We find
this behavior in the localized region of the phase diagram,
in one, two, and three dimensions and expect it
to be present in higher dimensions as well. Furthermore,
we find this behavior for all bounded distributions of
on-site disorder (only) that we have considered, but not
for unbounded distributions like Gaussian disorder, the
latter being consistent with the result of an analytic DOS
for Gaussian disorder [4].
Several recent studies have focused on the role played by

resonant states in transport. Pulsed microwave experiments
by Zhang et al. [12] in quasi-one-dimensional localized
samples have questioned the validity of self-consistent
localization theory in the presence of resonant transmis-
sions. This is further supported by numerical and analytical
results in Ref. [13]. Also, the distribution functions of
conductivity in one dimension in the regime of resonant
states are shown to be governed by two length scales by
Deych et al. [14]. Thus, the regime of resonant states
differs in several ways from that of regular Anderson
localized states.
We recall the single-band tight-binding Hamiltonian

studied by Anderson [1]-

H ¼ X

i

�ijiihij þ V
X

i;j

jiihjj; (1)

where jii denotes a state localized at the site i, the sum i is
over sites of a d-dimensional hypercubic lattice, and i, j are
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nearest neighbors. Further, �i are independent random
variables distributed uniformly in the (bounded) interval
(�W=2,W=2), i.e., Pð�iÞ ¼ 1=W in the aforesaid interval,
and Pð�iÞ ¼ 0 outside. For such a distribution, the DOS is
nonzero only in the bounded interval ð�EB; EBÞ, where
EB ¼ W=2þ ZV is the true band edge and Z ¼ 2d is the
coordination number for hypercubic lattices. [Quite gen-
erally, for Pð�iÞ symmetric around a mean (which can be
taken to be zero without loss of generality), the DOS is also
symmetric for bipartite lattices like the hypercubic lattice.]
For this model, the DOS was shown to be analytic for
jEj<W=2� ZV [9]. In what follows, we use V ¼ 1, as
our unit of energy.

Two canonical quantities used to study localization nu-
merically are (i) the IPR and (ii) the Lyapunov exponent.
The IPR of any wave function � ¼ P

iaijii is defined as:

IPR� ¼
P

i jaij4
ðPi jaij2Þ2

: (2)

To determine the IPR�, we diagonalize the Hamiltonian
(1) for lattices of size Ld (in d dimensions), for a specified
value ofW=V, and compute the IPR for each eigenstate�.
We then compute the ensemble averaged IPR for eigen-
states with energies in a small interval around any given
energy E, by collecting data for as many samples as are
needed for IPRðEÞ to converge, and plot IPRðEÞ versus E.
For energies E within the localized regime, it is easy to see
that IPR is inversely proportional to the number of sites the
typical wave function resides on and therefore IPR reaches
a constant value as the size of the system L ! 1. For E
within extended states, IPR is expected to decay as L�d, in
d dimensions, while at the mobility edge, IPR decays as a
nontrivial power law, related to the multifractal nature of
the eigenstates at the critical energy [5].

The Lyapunov exponent characterizing eigenstates at a
given energy E, LyðEÞ, is determined using a quasi-one-
dimensional structure, with a fixed width M in the trans-
verse dimensions (i.e., a cross section of Md�1) and a
(much longer) length L in one dimension, which is allowed
to become as large as necessary to obtain the L ! 1 limit.
LyðEÞ gives the exponential decay of the wave functions at
energy E (quasi-one-dimensional), and is thus inversely
related to the localization length �MðEÞ at E. (To obtain the
true behavior of the localization length in the thermody-
namic limit for a d > 1 dimensional system, the limit
M ! 1 has to be dealt with; in this Letter, we restrict
ourselves to LyðEÞ for d ¼ 1, where no such extrapolation
is required.) In d ¼ 1, LyðEÞ is obtained [6] from the
eigenvalues of the transfer matrix (which come in inverse
pairs), for each value of the disorder parameter W=V, by
increasing the size of the system L until convergence is
reached.

In d ¼ 1, where all states are known to be localized for
all nonzero disorder (W), both IPRðEÞ and LyðEÞ are
expected to be inversely proportional to the localization

length �ðEÞ. In Fig. 1, we plot both IPRðEÞ and LyðEÞ as a
function of E for a typical value W ¼ 4. (For both plots,
the size of the system has been taken to be large enough
for the quantities to converge within our statistical errors.)
As can be seen, the two quantities track each other reason-
ably well in the middle of the band, both increasing as one
moves away from the band center (implying a decreasing
localization length, as would be expected). However, as
one approaches the band edges, LyðEÞ continues to rise,
whereas IPRðEÞ changes course, and appears to go to zero
at the band edge. Furthermore, upon close examination,
the downturn appears to be accompanied by a nonanaly-
ticity at the maximum value of the IPR.
The nonmonotonic behavior of IPRðEÞ is easily under-

stood in terms of Lifshitz states [6,15]. The states at the
very edge of the band are due to rare configurations of
a cluster of contiguous sites that all have an on-site energy
close to W=2 (or �W=2); the larger the cluster, the closer
the cluster eigenstate energy (ECL) to the band edge, EB

[ðEB � ECLÞ / 1=L2, where L is the linear dimension of
the cluster; such a result follows from a particle-in-a-box
like considerations [6]]. In the case of Lifshitz states, the
eigenstates actually spread over a larger number of sites
as the band edge is approached; nevertheless, their expo-
nential decay at long distances keeps getting faster.
Consequently, LyðEÞ grows monotonically, while IPRðEÞ
decreases as the band edge is approached, going to zero

like jEB � Ejd=2.
Since rare clusters giving rise to the tail of the Lifshitz

states occur with probability exp½�cLd� for clusters of
linear dimension L, one can show [15] that near the

band edge, the electronic density of states, NðEÞ /
exp½�C=jEB � Ej�d=2�, where c and C are constants.
Thus, while much is known [15] about the behavior
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FIG. 1 (color online). IPRðEÞ and LyðEÞ for W ¼ 4 for the 1D
Anderson model with uniform (‘‘box’’) distribution.
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asymptotically near the band edge, it is also tempered by
the fact that the DOS goes exponentially fast to zero at the
band edge with an essential singularity; further, this ex-
ponential drop becomes more pronounced in higher dimen-
sions, so as to be of less practical significance.

However, the phenomenon of resonant tunneling that
gives rise to the Lifshitz tail, is not limited to large clusters.
In fact, in the large disorder limit (W � V), resonance
between a single pair of sites gives rise to states that are
outside the disorder bandwidth W, by OðVÞ, which is
parametrically larger than the perturbation series for typi-
cal ‘‘Anderson-localized’’ states, for which the energy shift
in a locator expansion [16] is V2=W. States residing on two
(or a small number of) resonant states are not exponen-
tially rare but only down by a power-law factor in the
expansion parameter (V=W) at large disorder. Such local
resonance can give rise to special effects, such as extended
states in dimer models [17], and on tree structures [18],
and, as we show below, also for the Anderson model of
Eq. (1) on hypercubic lattices.

Figure 2 plots LyðEÞ versus IPRðEÞ for different values
of W=V for the 1D Anderson model. As can be seen, the
implicit plots show two clear branches for W=V ¼ 4 and
greater, confirming the nonanalytic behavior of IPRðEÞ at
its maximum. For smaller W=V, the two-branched curves
lose the sharp bend and appear to become analytic, but
remain re-entrant (bending backwards); as W ! 0, the re-
entrant behavior disappears as well. For each value of
W=V, we divide the states into the two branches, separated
by the maximum value of IPRðEÞ. For the positively or
negatively correlated branches, we call the states ‘‘typical’’
(Anderson localized) and ‘‘resonant’’ (Lifshitz like) states
respectively. By determining the total number of states
in each branch we plot the fraction of ‘‘resonant’’
states (as defined above) of the total number of states in
Fig. 3 as a function of the disorder parameterW=V. As can
be seen, this kind of division suggests that there is an
abrupt increase in the effective number of resonant states

around W=V ¼ 3:8, to a value of � 17%, a fraction large
enough that they cannot reasonably be called ‘‘rare-
fluctuation’’ effects, as Lifshitz tail states typically are.
The fraction of resonant states is inversely related to the
length ls (the average distance between the resonant states)
defined in Ref. [14].
The above singular behavior is seen in one dimension for

which all states are localized for nonzero W. Clearly,
therefore, the existence of this phenomenon should not
depend on dimensionality; in fact, we see the same behav-
ior for IPRðEÞ for the Anderson model with the uniform
(box) distribution of disorder in two and three dimensions
(in the localized phase) also (Fig. 4).
It is instructive to look at the whole distribution of the

IPR at different energies in the band instead of just its
average value IPRðEÞ at each energy. In Fig. 5, we plot this
distribution (in d ¼ 1) for large disorder (W ¼ 10), when
most eigenstates are very strongly localized, and the dis-
tribution can be easily interpreted. The IPR has a bimodal
distribution with two peaks around 0.5 and 0.9, indicating
that most of the states have large amplitudes on either
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FIG. 2 (color online). LyðEÞ versus IPRðEÞ for different values
of disorder W for the 1D Anderson model.

2 4 6 8 10
0

0.05

0.1

0.15

w

F
ra

ct
io

n 
of

 s
ta

te
s 

be
yo

nd
 m

ax
im

um
 IP

R

FIG. 3 (color online). Abrupt rise in fraction of ‘‘resonant’’
states near W ¼ 3:8 for the 1D Anderson model.
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FIG. 4 (color online). IPR of the 2D Anderson model at
W ¼ 20 (left) and the 3D Anderson model at W ¼ 32 (right)
for the uniform distribution (circles, blue) as well as Gaussian
distribution with the same variance (triangles, red), deep in the
localized phase.
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2 or 1 sites respectively. The distribution does not change
much as we move from the center of the band towards the
edges, till at a certain value of energy, we suddenly lose all
the 1-site, i.e., Anderson-type wave functions. This is
exactly the energy at which the sharp downturn of the
IPR is observed.

We have also explored other bounded distributions Pð�iÞ
and find a similar sharp transition as a function of energy E
between typical Anderson-localized states and resonant
states. A detailed analysis of these results will be presented
elsewhere [19]. However, no such behavior is observed
numerically when the on-site energies are Gaussian dis-
tributed, even when we reach very low values of DOS
(down to 0.01% of the peak). We believe the lack of
singular behavior is due to the fact that the Gaussian
distribution is unbounded; and our finding is consistent
with Wegner’s result (no singularity in DOS for Gaussian
disorder [4]).

As the apparent singularity is seen only for bounded
disorder, it is appropriate to ask whether such models are
realistic for actual experimental systems. While the naive
guess would favor unbounded distributions, for real disor-
dered systems, chemical considerations (e.g., electron af-
finities or ionization potentials of locally stable random
clusters) would in fact suggest that models with bounded
disorder are closer to reality. Sharp thresholds have been
seen in optical absorption [20] and DOS [21] of dopant
clusters in the positionally disordered system of doped
semiconductors. For the traditional alloy model with a
bimodal distribution of on-site energies, the situation is
even more severe, with several critical energies separating
eigenstates of different types [19], especially in the large
disorder limit.

Since the behavior we find persists (and is most evident)
for large disorder (i.e., large W), and a majority of eigen-
states are localized mainly on one or two sites in that limit
(see Fig. 5), we have solved a simple two-site Anderson
model with a uniform (box) distribution for the on-site
energies, for which we have been able to derive analytical
expressions for both the DOSðEÞ and IPRðEÞ. We find that
for such a toy model [22], there is singular behavior of

both quantities at a critical energy jEj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðW=2Þ2 þ V2
p

,
which is in good agreement with the critical energy deter-
mined numerically for the thermodynamic limit for large
W. We have also numerically computed both quantities
for finite one-dimensional rings of lattice sites and find that
while the singularity in the DOS gets weaker with size, that
for IPRðEÞ actually gets stronger with increasing size,
consistent with there being a genuine singularity in the
thermodynamic limit. The behavior of the DOS in the
thermodynamic limit will be reported elsewhere [19].
In conclusion, we have numerically analyzed the behav-

ior of the eigenstates of Anderson’s original model for
single-particle localization on hypercubic lattices in dimen-
sions d ¼ 1, 2, and 3 with on-site disorder. By focusing on
two measures of the localization length, the IPR and the
Lyapunov exponent in the localized phase, we find that the
two measures show distinct behavior as one moves from
the band center towards the band edge. This divergence of
behavior is accompanied by an apparent singularity of the
IPR at a critical energy that separates typical Anderson-
localized states from resonant states. Highermoments of the
electronic wave functions also display singular behavior at
the same energy. This critical energy is found for bounded
disorder distributions (but not for unbounded distributions)
and is distinct both from the mobility edge and the band
edge. Possible experimental consequences of such an
abrupt change in behavior are being investigated, e.g., in
disordered photonic lattices [23].
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