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We study the effects of opening the band gap on the double exchange ferromagnetism. Applying the

density-matrix renormalization group method and an analytical expansion from the dimer limit to the one-

dimensional double exchange model, we demonstrate for a relevant region of the exchange coupling that,

in the weak dimerization regime, the Peierls gap opens in the fully spin-polarized conduction band without

affecting its ferromagnetism, whereas in the strong dimerization regime, the ferromagnetism is destroyed,

and the Mott gap opens instead, leading the system to the antiferromagnetic quasi-long-range order.

An insulator version of double exchange ferromagnetism is thus established.
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Magnetism and electronic transport properties of mate-
rials are closely related to each other; e.g., insulating
transition-metal oxides are typically antiferromagnetic,
and ferromagnetism usually goes hand in hand with met-
allicity [1]. Elucidation of the mechanisms of this relation-
ship is one of the major issues in the field of physics of
strong electron correlations. A well-known example is
the double exchange ferromagnetism that occurs in mixed
systems of localized spins and itinerant electrons interact-
ing via the Hund’s rule coupling, where the coherent
motion of the itinerant electrons aligns the localized spins
ferromagnetically to gain in kinetic energy of the itinerant
electrons [2–4].

A question then arises as to what happens in this ferro-
magnetism if the coherent motion of electrons ceases due,
e.g., to the opening of the band gap. This issue becomes a
real question in ferromagnetic hollandite K2Cr8O16 [5],
where the double exchange mechanism induces the three-
dimensional (3D) full spin polarization in the system [6],
and then the metal-insulator transition follows in its fully
spin-polarized quasi-one-dimensional (1D) conduction
band by the Peierls mechanism [7,8], without affecting
its 3D ferromagnetism. Thus, the uncommon ferromag-
netic insulating (FI) state is realized in this material [7].

A naive answer to the above frequently asked question
may then be that the ferromagnetism can survive if the
band gap is small enough in comparison with the width of
the conduction band, and therefore, the motion of conduc-
tion electrons, though not coherent, is not significantly
suppressed. However, to the best of our knowledge, no
quantitative theoretical studies have been done on the issue
of whether this is actually the case.

In this Letter, we address this issue from the theoretical
standpoint. We apply the numerical density-matrix renor-
malization group (DMRG) technique [9] and analytical
expansion from the dimer limit to the 1D double exchange
model that simulates the quasi-1D chain of K2Cr8O16 and
study the effects of opening of the band gap on the double

exchange ferromagnetism. We calculate the total-spin
quantum number and charge gap of the system and extract
the ground-state phase diagram of the model.
We will thereby demonstrate for a relevant region of the

exchange coupling that, in the weak dimerization regime,
the Peierls gap opens in the fully spin-polarized conduction
band without affecting its ferromagnetism, whereas in the
strong dimerization regime, the ferromagnetism is de-
stroyed, and the Mott gap opens instead due to the effective
‘‘on-dimer’’ Coulomb interaction, which leads the system
to the antiferromagnetic quasi-long-range order. The met-
allicity itself is not, therefore, a necessary condition for the
realization of the double exchange ferromagnetism, and
thus, an ‘‘insulator version’’ of the double exchange ferro-
magnetism is established. This is a route to the realization
of insulating ferromagnets, different from those discussed
in doped LaMnO3 where the orbital ordering plays an
essential role [10–12].
Our model (see Fig. 1) contains the terms of Peierls

dimerization and Hund’s rule coupling and is defined by
the Hamiltonian

H ¼ � XL
i¼1;�

ti;iþ1ðcyi;�ciþ1;� þ H:c:Þ � JH
XL
i¼1

si � Si

si ¼ 1

2

X
�;�0

cyi;���;�0ci;�0 ; (1)

where cyi;� is the creation operator of an electron with spin

�ð¼"; #Þ at site i, si is the spin operator of a conduction
electron at site i, � is the vector of Pauli matrices, and
Si is the quantum spin operator (of spin 1=2) of a local-
ized electron at site i. The hopping parameter between
the nearest-neighbor sites is defined as ti;iþ1 ¼ ½1�
ð�1Þi�=2�t with the dimerization strength � of 0��<2;
we, in particular, define t� ¼ ð1� �=2Þt. JH is the strength
of the Hund’s rule coupling. L is the number of sites in the
system, where the site contains a conduction orbital and a
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localized spin. We confine ourselves to the case at quarter
filling of conduction electrons n ¼ N=L ¼ 1=2, where N
is the number of conduction electrons in the system. We
introduce � as a controllable input parameter rather than
the order parameter of the spontaneous lattice dimerization
since our purpose is to study the effects of � on the elec-
tronic states of the model.

We use the DMRG method to investigate the ground-
state properties of the system Eq. (2), where the open-end
boundary conditions are applied. We study the model with
several lengths of L ¼ 8–20, keeping m ¼ 1200–3200
density-matrix eigenstates in the renormalization proce-
dure; in this way, the largest truncation error, or the dis-
carded weight, is on the order of 10�11. Note that we have
to keep relatively numerous density-matrix eigenstates to
extract the true ground state from a number of nearly
degenerate magnetic states, in particular, in the vicinity
of the phase boundaries. The extrapolation to the thermo-
dynamic limit L ! 1 is made in the results presented
unless otherwise indicated.

First, let us present the total-spin quantum number S of
the system, which is calculated directly from the ground-
state expectation value of S2 defined as hS2i ¼ SðSþ 1Þ ¼P

ijðhsi � sji þ 2hsi � Sji þ hSi � SjiÞ. The results are given

in Fig. 2 as a ground-state phase diagram. We find that
there are three phases, S ¼ 0, 0< S< Smax, and S ¼ Smax,

depending on the values of JH and �, where Smax denotes
the full spin polarization. As expected, and in agreement
with the previous calculations at � ¼ 0 [13–16], the
S ¼ Smax phase appears when JH is large, the S ¼ 0 phase
appears when JH is small, and in between, the phase with
the intermediate spin polarization also appears as in
Ref. [15] at � ¼ 0 [see also Fig. 3(a) below]. These phases
are retained even when the dimerization � is introduced.
We note that the two critical values of JH that separate
the S ¼ Smax and S ¼ 0 phases increase with increasing �
and that the region with the intermediate spin polarization
becomes narrower and vanishes at � ! 2 (see below).
Next, let us calculate the charge gap � defined as

� ¼ limL!1�ðLÞ with �ðLÞ ¼ 1
2 ½ENþ2

0 ðLÞ þ EN�2
0 ðLÞ �

2EN
0 ðLÞ�, where EN

0 ðLÞ is the ground-state energy of the

system of sizeLwithN electrons. The gap� is definedwith
the prefactor 1=2, so that the single-particle band gap is
identical to� in the present case where pairing interactions
are absent. The results are shown in Figs. 3(b)–3(d). We
find that the charge gap opens in the entire parameter space
except at the lines � ¼ 0 and JH ¼ 0. The model at JH ¼ 0
is trivial, where the conduction electrons, decoupled com-
pletely from the localized spins, behave just as the non-
interacting electrons, resulting in the paramagnetic metallic
(PM) phase.
The model Eq. (1) at � ¼ 0, on the other hand, is highly

nontrivial, and much work has been done in recent years
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FIG. 2 (color online). Calculated ground-state phase diagram
of the 1D double exchange model at quarter filling with the
lattice dimerization �. We find the FI (ferromagnetic insulating),
PI (paramagnetic insulating), FM (ferromagnetic metallic), and
PM (paramagnetic metallic) phases. The FI-PI phase boundary at
� ! 2 is determined by the analytical expansion from the dimer
limit and is shown by the open diamond and dashed line. The FM
and PM phases at � ¼ 0 or JH ¼ 0 are also indicated by the
thick lines.
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FIG. 1 (color online). Schematic representations of the double
exchange model in (a) the weak dimerization regime and
(b) strong dimerization regime. In (c), we illustrate the non-
interacting band structure "ðkÞ of our model with the lattice
dimerization � in the unfolded Brillouin zone.
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[13–16]: basically, the ferromagnetic metallic (FM) phase
appears for the large JH region, which changes into the PM
phase when JH becomes small. In addition, it has been
claimed [15,17,18] that the region of phase separation, in
particular, near half filling and the ‘‘spiral’’ phase with
long-wavelength antiferromagnetic correlations appears
at the FM-PM phase boundary. Although we have not
detected any indications of the phase separation at least
at quarter filling in our accurate DMRG calculations with
very large m values, our results obtained are consistent
with the results of previous work [13–16]: we find that
either the FM phase (when JH is large) or PM phase (when
JH is small) is realized, and in between there is the partially
spin-polarized metallic phase [see Figs. 2 and 3(a)] that
may correspond to the spiral phase predicted in Ref. [15].

Let us then introduce the lattice dimerization � > 0.
The results are the following: in the S ¼ Smax region, we
find that the charge gap of �=t ¼ 2� opens as shown in
Fig. 3(b). This can simply be understood because in this
region we have the noninteracting band of spinless fermi-
ons at half filling, and therefore, the lattice dimerization �
opens the band gap of the size �=t ¼ 2�. The FI phase is
thus realized. Since the FM phase due to the double ex-
change mechanism is continuous to this FI phase, we may
naturally refer to it as the insulator version of the double
exchange ferromagnetism.
In the S ¼ 0 region, we find that the gap actually opens

as � / � in the weak dimerization limit as shown in
Fig. 3(c). The size of the gap increases as the value of JH
increases as shown in Fig. 3(d). This phase with�> 0may
then be denoted as the paramagnetic insulating (PI) phase.
The Fourier transform of the spin-spin correlation function

for the conduction electrons SðqÞ ¼ 1
L

P
i;je

iqðRj�RiÞhsi � sji
(as well as that for the localized electrons, see Fig. 2 of
Ref. [15]) may characterize this phase. The calculated
results are shown in Figs. 3(e) and 3(f), where we find
that the antiferromagnetic spin correlation of the wave
vector of q ¼ �=2 is enhanced and that the lattice dimeri-
zation inducing the localization of conduction electrons
further enhances this correlation. This result may therefore
be interpreted as an enhancement by the lattice dimeriza-
tion of the ‘‘island’’ state predicted in Ref. [15], where the
high-spin (S ¼ 3=2) clusters, formed by a conduction
electron coupled ferromagnetically with the two neighbor-
ing localized spins, are arranged antiferromagnetically
with the quasi-long-range order [15,19]. In higher spatial
dimensions, this phase may well fall into the true long-
range antiferromagnetic order, resulting in the antiferro-
magnetic insulating (AFI) phase. This situation resembles
that of the ‘‘dimer-Mott’’ phase [20,21] in the dimerized
Hubbard model at quarter filling, although in the latter the
spins are of S ¼ 1=2.
In the 0< S< Smax region, the charge gap also opens

at � > 0, where its size increases rapidly with increasing
JH=t. We thus have the FI phase here as well, which may be
the insulating spiral phase continuous to the metallic one
predicted in Ref. [15].
Now, let us discuss the strong dimerization limit,

where we start with the highly correlated clusters Cl (l ¼
1; � � � ; L=2) coupled weakly to each other through the hop-
ping parameter t� [see Fig. 1(b)]. Each of the clusters
consists of the two conduction orbitals and two localized
spins. In the ground state, the cluster contains one conduc-
tion electron (and two localized spins), and the internal
three spins are fully polarized. The lowest energy of
the single cluster is eð1Þ ¼ �JH=4� tþ, where the
conduction electron is in the bonding state of the two
conduction orbitals. The eigenstates of the cluster with the
0 and 2 conduction electrons are also derived exactly,
and the lowest energies are found to be eð0Þ ¼ 0 and
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FIG. 3 (color online). (a) Calculated normalized total-spin
quantum number S=Smax as a function of JH=t. Also shown are
the calculated results for the charge gap �: (b) � dependence in
the FI phase, (c) � dependence in the PI phase (where the dotted
line indicates the result of the strong-dimerization expansion),
and (d) JH=t dependence in the PI phase. Inset of (b) and
(c) shows examples of the finite-size scaling of the gap. In (e)
and (f), the calculated spin structure factors SðqÞ in the PI
phase without and with the lattice dimerization, respectively,
are shown.
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eð2Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2H þ 16t2þ

q
=2, respectively. In the strong-

dimerization limit of the PI phase, we can therefore map
our system Eq. (1) onto an effective single-band Hubbard
model defined in terms of the bonding orbital on each dimer.
The Hamiltonian may be written as

H eff ¼ teff
XL=2

i¼1;�

ðbyi;�biþ1;� þ H:c:Þ þUeff

XL=2
i¼1

nbi;"n
b
i;# (2)

with the creation operator of an electron on the bonding

orbital byi ¼ ðcy2i�1;� þ cy2i;�Þ=
ffiffiffi
2

p
and nbi;� ¼ byi;�bi;�. We

obtain the effective hopping integral teff ¼ t�=2 and
effective ‘‘on-dimer’’ Coulomb interaction Ueff ¼ eð2Þ þ
eð0Þ � 2eð1Þ. In thismapping, the localized spins contribute
only to Ueff and their degrees of freedom are not explicitly

involved in the operator byi;�. An analytical expression for

the charge gap may thus be derived as

� ¼ Ueff � 2t�

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2H þ 4t2ð2þ �Þ2

q
=2þ 2t�þ JH=2; (3)

which is valid up to the first order of 2-�. The result thus
obtained is shown in Fig. 3(c) as a dotted line, where we
find that the agreement with the DMRG result is very good.
In the FI phase, on the other hand, the charge gap is always
�=t ¼ 2� in its entire region, independent of JH. The two
gaps are therefore discontinuous at the phase boundary.

Next, we derive the effective exchange interaction Jeff
between conduction electrons on the neighboring clusters.
We first take a direct product of the isolated clusters

(
QL=2

l¼1 Cl) to be the unperturbed ground state of the system.

Then, taking into account all the processes up to the second
order of the hopping t�, we obtain the expression for Jeff as

Jeff ¼ t2�
� ðJ2Hþ8t2þÞ
ðJHþ4tþÞðJ2Hþ16t2þÞ

þ 1

8ðJHþ2tþÞ

þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2Hþ16t2þ

q
þ4tþ

�
2ðJHþ4tþÞ

16JHtþðJ2Hþ16t2þÞ
� 3

16tþ

�
; (4)

where we should note that, if only the lowest intermediate
state is taken into account in the second-order process,
we obtain Jeff ¼ 4t2�=Ueff , which is always positive (or
antiferromagnetic). We thus find that, depending on the
value of Jeff (either positive or negative), the ground state
realized is either the PI phase or the FI phase. The critical
value of JH at � ! 2 is found to be 29:004t, which deter-
mines the FI-PI phase boundary at � ! 2. The region of
the intermediate spin state does not appear here. The result
for the phase boundary obtained from Eq. (4) is shown as a
dashed line in Fig. 2, where we find again that the agree-
ment with our DMRG result is very good, reinforcing the
validity of our phase diagram of Fig. 2.

In summary, we studied the effects of opening of
the band gap on the double exchange ferromagnetism.

We applied the DMRG technique and analytical expansion
from the dimer limit to the 1D double exchange model at
quarter filling with lattice dimerization and obtained the
ground-state phase diagram. We found three phases: the FI
phase with the Peierls gap and full spin polarization, the PI
phase with the Mott gap and dominant antiferromagnetic
spin correlations, and the FI phase with the partial spin
polarization. The results for JH=t * 15 demonstrated that,
in the weak dimerization regime, the Peierls gap opens in
the fully spin-polarized conduction band without affecting
its ferromagnetism. Therefore, the metallicity itself is not
a necessary condition for the realization of the double
exchange ferromagnetism. The concept of the insulator
version of the double exchange ferromagnetism was thus
established. In the strong dimerization regime, on the other
hand, the ferromagnetism is destroyed at JH=t & 29, and
the Mott gap due to the effective on-dimer Coulomb inter-
action opens there with the antiferromagnetic quasi-long-
range order in the system.
The uncommon FI state realized in K2Cr8O16 [5,7] then

means that this material is in the weak dimerization regime
with the Peierls gap and full spin polarization. A recent
experiment [22] suggests that, by applying high pressures
of * 2 GPa, the FM phase is suppressed very rapidly,
while the metal-insulator transition remains almost un-
changed, leading to the transition from the PM phase to
the PI or AFI phase by lowering temperature. It may then
be quite interesting to point out that, if the applied pressure
decreases the value of JH=t, this might correspond to the
phase change in the quasi-1D chains from the FI to PI
phase as in our phase diagram given in Fig. 2, where the
intermediate spin state, or the spiral state of Ref. [15],
may also be predicted to appear under high pressure. We
hope that our work presented here will stimulate further
searches for new phenomena and materials with intriguing
magnetic and transport properties derived from the inter-
play between the double exchange and Peierls or Mott
mechanisms.
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