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The pseudospin symmetry (PSS) is a relativistic dynamical symmetry connected with the small
component of the Dirac spinor. The origin of PSS in single particle bound states in atomic nuclei has
been revealed and studied extensively. By examining the zeros of Jost functions corresponding to the
small components of Dirac wave functions and phase shifts of continuum states, we show that the PSS in
single particle resonant states in nuclei is conserved when the attractive scalar and repulsive vector
potentials have the same magnitude but opposite sign. The exact conservation and the breaking of the PSS
are illustrated for single particle resonances in spherical square-well and Woods-Saxon potentials.
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The concept of pseudospin (PS) is often introduced to
reveal the dynamical nature of quantum systems. More than
40 years ago the pseudospin symmetry (PSS) in nuclear
single particle states was observed: PS doublets with quan-
tum numbers (n,, [, j=1+1/2)and (n, — 1,1+ 2, j =
[ + 3/2) are nearly degenerate [1,2]. Much effort had been
devoted to exploring the origin of the PSS (see, e.g.,
Refs. [3-5]) until it was shown that the PSS in nuclei is a
relativistic symmetry which is exactly conserved when the
scalar and vector potentials have the same size but opposite
sign, i.e., %(r) = S(r) + V(r) = 0 [6]. However, this con-
dition is never met in finite nuclei, because in this limit there
are no bound nuclei any more. Later it was found that the
PSS is exact under a less strict condition, d2(r)/dr = 0,
and to what extent the PSS is conserved is related to the
competition between the centrifugal barrier and the PS
orbital potential [7,8]. This condition can also not be met
in realistic nuclei; therefore, experimentally one always
finds that the PSS is broken. The above mentioned two
conditions also result in the spin symmetry (SS) in anti-
nucleon spectra [9,10] which is much better developed than
the PSS in nuclear single particle spectra [10,11]. The SS
and PSS have been studied extensively within the relativis-
tic framework in which static mean fields dominate, includ-
ing the PSS in deformed nuclei [12,13] and the SS for A
spectra in hypernuclei [14]. The relevance of the PSS in
nucleon-nucleus and nucleon-nucleon scatterings has also
been discussed [15-18]. Readers are referred to Ref. [19]
for a review and Refs. [20-25] for some recent progresses.

In recent years, there has been increasing interest in the
exploration of nuclear single-particle resonant states espe-
cially in the study of exotic nuclei with unusual N/Z ratios
[26-32]. In these nuclei, the neutron (or proton) Fermi
surface is close to the particle continuum; thus, the con-
tribution of the continuum and/or resonances is important
[33,34]. The study of symmetries in resonant states is
certainly an interesting topic. There have been some
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investigations of the PSS in single particle resonances
[35-38]. For example, the PSS for the resonant states in
208Pb is investigated by solving the Dirac equation with
Woods-Saxon-like vector and scalar potentials in combi-
nation with an analytic continuation in the coupling-
constant method [26,27,39] and it was found that the
diffuseness of the potentials plays an important role in
the splitting of energy and width of resonant PS partners
[35]. However, in all these studies, the PSS in resonances
was investigated numerically and a rigorous justification of
the PSS in single particle resonant states, like that for
bound states given in Ref. [6], is still absent. In this
Letter, we show that the PSS in single particle resonant
states in nuclei is also exactly conserved under the same
condition for the PSS in bound states, i.e., 2(r) = 0 or
d>(r)/dr = 0. We will also illustrate the exact conserva-
tion and the breaking of PSS in single particle resonances
in spherical square-well and Woods-Saxon potentials.

In a relativistic description, nuclei are characterized by a
strong attractive scalar potential S(r) and a strong repulsive
vector potential V(r) [33,34]. The Dirac equation for a
nucleon reads

{a-p+BM+ SO+ Vi) =egp(r). (1)

where & and B are the Dirac matrices and M is the nucleon
mass. For a spherical nucleus, the Dirac spinor

1 ( iF, (NY!, (6, $) )

(r)=- . (2)
LA R P

r

where Y]l-m(ﬁ, ¢) is the spin spherical harmonic. F,,(r)/r
and G;,(r)/r are the radial wave functions for the upper
and lower components with n and 7 radial nodes. k =
(—1)7**12(j + 1/2) and [ = [ — sgn(k). The radial Dirac
equation is then derived as
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where 2. (r) is defined earlier, A(r) = V(r) — S(r), and € is
the eigenenergy. For brevity we omit the subscripts from
F(r) and G(r) whenever no confusion arises. This first
order coupled equation can be rewritten as two decoupled
second order differential ones. Here we only write down
the one for the small component to which the PSS is
directly connected,

1 dx(nd II+1)
I:W M_(r) dr dr r?
1 kd(r)

m?T—M+(r)M_(r):|G(r) =0, 4

where M, (r)=M+e—A(r) and M_(r) =M — e+ 2(7).
Equation (4) is fully equivalent to Eq. (3).

For the continuum in the Fermi sea, i.e., € = M, there
exist two independent solutions for Eq. (4). (Note that the
following discussions are also valid for the continuum in
the Dirac sea.) The physically acceptable solution is the
one that vanishes at the origin. As usual we define the
regular solution G(r) as the one that behaves like j(pr) as
r— 0 [40],

limOG(r)/ jip) =1, p=+e — M2 (5)

We now turn to the asymptotic behavior of the regular
solution as r — co. At large r the potentials for neutrons
vanish and the wave functions oscillate, Eq. (4) becomes a
Ricatti-Bessel equation with angular momentum / and the
solution can be written as a combination of the Ricatti-
Hankel functions,

G =3[ T¢Iy (1) = TEPr B | 7= o0

(6)

where J9(p) is the Jost function for the small component
and hii(pr) the Ricatti-Hankel functions.

In nuclei the potentials V(r) and S(r) share some general
properties; e.g., they are analytic functions of r, vanish
when r — o0, and have no singularities. Under such con-
ditions, the Jost function is an analytic function of p and
can be analytically continued to a large area in the complex
p plane. Here the structure of the p Riemann surface on
which the Jost functions are defined is more complex than
the nonrelativistic case. For example, the square root in the
relativistic energy-momentum relation €2 = p? + M? cre-
ates branching points at p = =iM; thus, the corresponding
Riemann surface is at least twofold. In Fig. 1 the zeros of
the Jost function J¢(p) on the complex momentum plane
are schematically shown. For simplicity we show only the
first sheet with Re(€) = 0 which contains positive energy
bound states and resonant states, while the other sheet with
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FIG. 1 (color online). Schematic picture of the zeros of the Jost
function J¢ on the complex momentum plane. A cut is made on
the imaginary axis, from p = iM to infinity and back to
p = —iM.

Re(€) = 0 can be used to investigate negative energy ones.
These two sheets are connected by a cut on the imaginary
axis, from p = iM to infinity and back to p = —iM.
Restricted to the first sheet and not too large |p|, J¢(p)
is a single valued analytic function of p. The zeros of
JS%(p) are denoted by full circles (bound states), open
circles (resonant states), and crosses (other zeros), respec-
tively. The zeros on the positive imaginary axis of the p
plane represent bound states of the original eigenvalue
problem, while the zeros on the lower p plane and near
the real axis correspond to resonant states. The resonance
energy E., and width I, are determined by the relation
E = E, — il',.s/2 = \/p> + M?. By examining the zeros
of the Jost function we can study the bound and resonant
states on the same footing and many known properties
of bound states can be generalized to resonances
straightforwardly.
In the PSS limit, Eq. (4) is reduced as

2 I+

[% - l(lr2 Die- M)M+(r):|G(r) —0. (7
For bound states it is an eigenequation that determines the
eigenenergy €. While for the continuum e can be any value
= M and we mainly focus on wave functions and their
asymptotic behavior. For PS doublets with different quan-
tum numbers « and «’ with ¥’ = —k + 1, the small com-
ponents satisfy the same equation because they have the
same pseudo-orbital angular momentum 7 [6]. In particular,
for continuum states, we have G (€, r) = G, (e, r) for any
energy €. Because the definition of the Jost function 7% (p)
only depends on the asymptotic behavior of the small
component, we have J%(p) = JS(p) on the positive
real axis. This equivalence can be generalized into the
complex p plane due to the uniqueness of the analytic
continuation. Thus the zeros are the same for J f, (p) and
JG(p): If there exists a resonant state with energy E,., and
width I, and the quantum number k, there must be
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another one with the same energy and width and quantum
number «’. That is to say, the PSS in single particle
resonant states in nuclei is exactly conserved when the
attractive scalar and repulsive vector potentials have the
same magnitude but opposite sign. Certainly if we focus on
the zeros of the Jost functions of PS doublets on the
positive imaginary axis of the p plane, we come to the
well-known PSS for bound states.

In scattering theories, one can also determine resonance
parameters from the change of cross section or phase shift
which give us more insights into the resonant phenomena.
Next we discuss the PSS in resonant states by examining
the phase shift. Using the asymptotic behavior of the
Ricatti-Bessel functions, one obtains from Eq. (7),

G, (r) = sin[pr - %T + Bf(p)] r— 00, (8)
where the phase shift §¢(p) is related to the Jost function
through JS(p) = |7C(p)le 9¢(P). Whenever 8S(p) =
nir + 7, there is a resonant state and its width is deter-
mined by the tangent of the phase shift function §%(p). In
the PSS limit, the coincidence between G,(r) and G (r)
means that 6%(p) = 6% (p) for any value of p. Therefore
resonance parameters of PS doublets are the same.

It has been postulated in previous numerical studies that
the widths of PS doublets should be different even in the
PSS limit because centrifugal barriers are different for
these two resonant states. Here we have shown that this
is not the case: For PS doublets of single particle resonant
states in nuclei, not only the energies, but also the widths
are exactly the same in the PSS limit.

Similar to what happens in bound states, when the PSS
limit is not realized, the PSS in resonant states is broken. In
the following we will use a solvable model to illustrate the
conservation and the breaking of the PSS in resonant states.
Note that this kind of investigation can also be done
numerically with other potentials.

We consider that 3(r) and A(r) are both spherical
square-well potentials,

C, r<R,
E(")—‘O’ F=R )]
AG) = D, r <R, 10
" 0, r=R, (10)

where C and D are constants and R is the width. For such
potentials the wave function is continuous at r = R, but not
its derivative because the derivative of a square-well
potential is a delta function. For » # R, Eq. (4) reads,

[d_Z_ II+1)
dr? r?

- M+(r)M_(r)]G(r) —0.

The regular solution of this equation is just a combination
of the Ricatti-Bessel functions,

I+1
G(r) = (%) ikn, <R (12)

6 =3[ 7¢Iy (1) - TErHF 0| r=r

(13)

with k =+/(e — C— M)(e — D + M). The coefficient
(p/k)"*1 is inserted in accordance with Eq. (5) and j,(z) &
7 lasz— 0.

Next let us determine the Jost function from continuous

conditions of radial wave functions at r = R,

G(Ry) =G(R-), F(Ry)=F(R-), (14)

where R_ and R, mean that one approaches r = R from
r <R and r > R, respectively. A linear equation for the
Jost function can be written immediately using the con-
nection condition for G(r),

p I+1 . i - .
(B) ity =3[ 87 (0B~ T h (om0 |

(15)
The continuous condition for F(r) can also be used to

deduce a similar equation. The derivative of G(r) is not
continuous at r = R,

dG dG
— - = —CF(R). 16
ar le " ar |e (R) (16)
Approaching R from r < R, we can represent F(R) by
1 d K
FR =——[——-=
(B) M+ C- e(dr r)G(r) =R

_ (p/™!

K
= iL(kR) — — j#(kR) |. 1
ek - Sk | an)
By substituting Egs. (12), (13), and (17) into Eq. (16) we
get a linear equation for J¢(p) and J¢(p)*. Finally the
Jost function for the small component reads,

/
Tip) =~ #{j;(kR)ph;’(pR) — kji(kR)h (pR)
_ %[kjg(m) - % j;(kR):Ihlf’(pR)}.

(18)

Now comparing Jost functions J%(p) and J¢(p), it is
clear that they differ only in the part containing C because
they have the same I. In other words, in the PSS limit, i.e.,
C =0, we have J%(p) = JC(p). Consequently the PSS
is conserved both in bound states and in resonant states. If
C # 0, the PSS is broken and we can study the PS splitting
of the energy and the width for resonant states. Due to the
special form of the spherical square-well potentials, the
PSS-breaking term is separated from the PSS-conserving
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term in the Jost function, which makes the study
of the conservation or the breaking of the PSS very
convenient.

The solution of 7%(p) = 0 can not be written in a closed
form. Here because the Jost function is analytic near its
zeros, the secant method can be used for searching the
roots. Starting from an initial guess for a root, the iteration
converges after a few steps. In Fig. 2 we show solutions in
the complex energy plane for PSS doublets with [ = 6, i.e.,
hyy, with k = —6 and j3,, with k' = 7 for square-well
potentials with D = 650 MeV and R = 7 fm. In the PSS
limit, i.e., C = 0, all the roots locate in the lower half-plane
and there are no bound states. Three pairs of PS resonant
partners are shown by full diamonds and squares in Fig. 2.
The conservation of the PSS for single particle resonant
states is clearly seen. When C = —66 MeV, there is one
bound state only for &y, /,. Three pairs of PS partners of
resonant states are shown by half-filled diamonds and
squares. One finds the breaking of the PSS in the resonant
states. For PS doublets with other values of I, we observed
similar behaviors concerning the exact conservation and
the breaking of the PSS. We also studied resonances in
Woods-Saxon-like potentials, W(r) = W,/{1 + exp[(r —
R)/al} (W=1V or S) with the parameters connected with
208Pb given in Ref. [35]: the depths V, — S, = 650 MeV
and V, + Sy = —66 MeV, the diffusivity parameter a =
0.6 fm, and R = 7 fm. Resonance parameters are obtained
with the real stabilization method [28]. The results are
shown as open diamonds and squares for 4/, and j3/,,
respectively. It is found that splittings of energy and width
both become smaller compared with the results with the
square-well potentials. The reason is that the derivative of
3.(r) is smaller due to a nonzero diffusivity parameter.

Now we briefly discuss protons. Due to the repulsive
Coulomb interaction, (r) cannot be zero, nor its first
derivative. Therefore the PSS limit can never be realized
for protons. However, the Coulomb potential is relatively

5 T ——r———T——rr7—r
] ; Square-well (PSS limit) . =
0 "”’00"’3%; ”””” Sqaure-well (C=-66 MeV) & =1
% 5 _ ; Woods-Saxon (¢ = 0.6 fm) < o _
\% [ 0 S hn/z T3]
ST Y S ] - ]
é -I5 F . . ne 4
I _2 1 1 1 =&
20F 4 6 8 10 12 ¢ o

PYRT YT ST W [T WY WY WY SN Y WY SN SN SN WY SN S SN S N S .o S
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FIG. 2 (color online). The zeros of the Jost function 7¢ on the
complex energy plane in square-well potentials (9) and (10) with
C = 0 (solid symbols) and C = —66 MeV (half-filled symbols)
for PS partners £/, (diamond) and j,3/, (square). The results
with Woods-Saxon-like scalar and vector potentials are also
shown as open symbols.

small compared with 3(r) and the breaking of the PSS
from the Coulomb interaction should be small.

In summary, we show that the PSS in single particle
bound and resonant states in nuclei can be investigated on
the same footing within the relativistic framework by
examining the zeros of Jost functions corresponding to
small components of nucleon Dirac wave functions. In
the PSS limit, i.e., when the attractive scalar and repulsive
vector potentials have the same magnitude but opposite
sign, small components of PS doublets are exactly the
same. Thus Jost functions describing the asymptotic be-
havior of the radial wave functions are identical to each
other. When analytically continued to complex momentum
plane, the resonant states, showing themselves as zeros of
the Jost functions, are always paired in the PSS limit,
which leads to the exact PSS. The conservation of the
PSS in the PSS limit is also justified by examining the
phase shift of continuum states. When leaving the PSS
limit, the PSS in resonant states is broken. These conclu-
sions are tested for single particle resonances in spherical
square-well and Woods-Saxon potentials.
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