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We determine the � dependence of the deconfinement temperature of SUð3Þ pure gauge theory, finding
that it decreases in the presence of a topological � term. We do that by performing lattice simulations at

imaginary �, then exploiting analytic continuation. We also give an estimate of such dependence in the

limit of a large number of colors N and compare it with our numerical results.
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The possible effects of a CP violating term in quantum
chromodynamics (QCD) have been studied for a long time.
Such a term enters the Euclidean Lagrangian as follows:

L� ¼ LQCD � i�qðxÞ;

qðxÞ ¼ g20
64�2

�����F
a
��ðxÞFa

��ðxÞ;
(1)

where qðxÞ is the topological charge density.
Experimental upper bounds on � are quite stringent

(j�j & 10�10), suggesting that such term may be forbidden
by some mechanism. Nevertheless, the dependence of
QCD and of SUðNÞ gauge theories on � is of great theo-
retical and phenomenological interest. The � derivatives of
the vacuum free energy, computed at � ¼ 0, enter various
aspects of hadron phenomenology; an example is the
topological susceptibility � � hQ2i=V (Q � R

d4xqðxÞ
and V is the space-time volume), which enters the solution
of the so-calledUð1ÞA problem [1,2]. Moreover, it has been
proposed [3] that topological charge fluctuations may play
an important role at finite temperature T, especially around
the deconfinement transition, where local effective varia-
tions of � may be detectable as event-by-event P and CP
violations in heavy ion collisions.

In the present work we study the effect of a nonzero � on
the critical deconfining temperature Tc, considering the
case of pure Yang-Mills theories. Due to the symmetry
under CP at � ¼ 0, the critical temperature Tcð�Þ is ex-
pected, similarly to the free energy, to be an even function
of �. Therefore we parameterize Tcð�Þ as follows

Tcð�Þ
Tcð0Þ ¼ 1� R��

2 þOð�4Þ: (2)

In the following we shall determine R� for the SUð3Þ
pure gauge theory, obtaining R� > 0, and compare it with a
simple model computation valid in the large N limit,
showing that R� is expected to be Oð1=N2Þ.

The method.—Effects related to the topological � term
are typically of a nonperturbative nature; hence, numerical

simulations on a lattice represent the ideal tool to explore
them. However, it is well known that the Euclidean path
integral representation of the partition function

ZðT; �Þ ¼
Z
½dA�e�SQCD½A�þi�Q½A� ¼ e�Vsfð�Þ=T (3)

is not suitable for Monte Carlo simulations because the
measure is complex when � � 0. SQCD ¼ R

d4xLQCD and

periodic boundary conditions are assumed over the com-
pactified time dimension of extension 1=T; fð�Þ is the free
energy density and Vs is the spatial volume.
A similar sign problem is met for QCD at finite baryon

chemical potential �B, where the fermion determinant
becomes complex. In that case, a possible partial solution
is to study the theory at imaginary �B, where the sign
problem disappears, and then make use of analytic con-
tinuation to infer the dependence at real �B, at least for
small values of�B=T [4]. An analogous approach has been
proposed for exploring a nonzero � [5–8]; as for �B � 0,
also in this case one assumes that the theory is analytic
around � ¼ 0, a fact supported by our present knowledge
about free energy derivatives at � ¼ 0 [9,10].
Various studies have shown that the dependence of the

critical temperature on the baryon chemical potential,
Tcð�BÞ, can be determined reliably up to the quadratic
order in �B while ambiguities related to the procedure of
analytic continuation may affect higher order terms [11].
It is natural to assume that a similar scenario takes place for
analytic continuation from an imaginary � � i�I term, i.e.,
that R� can be determined reliably from numerical studies
of the lattice partition function,

ZLðT; �Þ ¼
Z
½dU�e�SL½U���LQL½U�; (4)

where [dU] is the integration over the elementary gauge
link variables U�; SL and QL are the lattice discretizations

of respectively the pure gauge action and the topological
charge QL ¼ P

xqLðxÞ. We will consider the Wilson action
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SL ¼ 	
P

x;�>�ð1� ReTr���ðxÞ=NÞ, where 	 ¼ 2N=g20
and ��� is the plaquette operator.

Various choices are possible for the lattice operator
qLðxÞ, which in general are linked to the continuum qðxÞ
by a finite multiplicative renormalization [12]

qLðxÞ �a!0
a4Zð	ÞqðxÞ þOða6Þ; (5)

where a ¼ að	Þ is the lattice spacing and lima!0Z ¼ 1.
Hence, as the continuum limit is approached, the imaginary
part of � is related to the lattice parameter �L appearing in
Eq. (4) as follows: �I ¼ Z�L.

Since qLðxÞ enters directly the functional integral mea-
sure, it is important, in order to keep the Monte Carlo
algorithm efficient enough, to choose a simple definition,
even if the associated renormalization is large. Therefore,
following Ref. [8], we adopt the gluonic definition

qLðxÞ¼ �1

29�2

X�4

����¼�1

~�����Trð���ðxÞ���ðxÞÞ; (6)

where ~����� ¼ ����� for positive directions and ~����� ¼
�~�ð��Þ���. With this choice gauge links still appear line-

arly in the modified action; hence, a standard heat-bath
algorithm over SUð2Þ subgroups, combined with over
relaxation, can be implemented.

Finite temperature SUðNÞ pure gauge theories possess
the so-called center symmetry, corresponding to a multi-
plication of all parallel transports at a fixed time by an
element of the center ZN . Such symmetry is spontaneously
broken at the deconfinement transition and the Polyakov
loop is a suitable order parameter. Since qLðxÞ is a sum
over closed local loops, the modified action SL þ �LQL is
also center symmetric; hence, we still expect ZN sponta-
neous breaking and we will adopt the Polyakov loop and
its susceptibility as probes for deconfinement

hLi � 1

Vs

X
~x

1

N

�
Tr

YNt

t¼1

U0ð ~x; tÞ
�
;

�L � VsðhL2i � hLi2Þi; (7)

where Nt is the number of sites in the temporal direction.
Results.—In the following we present results obtained

on three different lattices, 163 � 4, 243 � 6, and 323 � 8,
corresponding, around Tc, to equal spatial volumes
(in physical units) and three different lattice spacings
a ’ 1=ð4TcÞ, a ’ 1=ð6TcÞ, and a ’ 1=ð8TcÞ. That will per-
mit us to extrapolate R� to the continuum limit.

We have performed, on each lattice, several series of
simulations at fixed �L and variable 	. Typical statistics
have been of 105–106 measurements, each separated by a
cycle of 4 over-relaxation þ1 heat-bath sweeps, for each
run; autocorrelation lengths have gone up to Oð103Þ cycles
around the transition. In Fig. 1 we show results for the
Polyakov loop modulus and its susceptibility as a function
of 	 for a few values of �L on a 243 � 6 lattice; we also

show data obtained after reweighting in 	. We notice a
slight increase in the height of the susceptibility peak as �L
increases; however, any conclusion regarding the influence
of � on the strength of the transition would require a finite
size scaling analysis and is left to future studies.
The critical coupling 	cð�LÞ is located at the maximum

of the susceptibility through a Lorentzian fit to unreweighted
data: values obtained at �L ¼ 0 coincides within errors
with those found in previous works [13]. From 	cð�LÞ we
reconstruct Tcð�LÞ=Tcð0Þ ¼ að	cð0ÞÞ=að	cð�LÞÞ by means
of the nonperturbative determination of að	Þ reported in
Ref. [13]. Notice that most finite size effects in the deter-
mination of 	cð�LÞ should cancel when computing the ratio
Tcð�LÞ=Tcð0Þ. A complete set of results is reported in
Table I.
As a final step, we need to convert �L into the physical

parameter � ¼ i�I. A well known method for a nonpertur-
bative determination of the renormalization constant
Z ¼ Zð	Þ is that based on heating techniques [14]. Here
we follow the method proposed in Ref. [8], giving Z in
terms of averages over the thermal ensemble:

Z ¼hQQLi
hQ2i ; (8)

where Q is, configuration by configuration, the integer
closest to the topological charge obtained after cooling.
Such method assumes, as usual, that UV fluctuations re-
sponsible for renormalization are independent of the topo-
logical background. Z has been determined for a set of 	
values on a symmetric 164 lattice, as reported in Fig. 2,
then obtaining Z at the critical values of 	 by a cubic
interpolation. Typical statistics have been of 105 measure-
ments, each separated by 5 cycles of 4 over-relaxation þ1
heat-bath sweeps, for each 	; the autocorrelation length of
Q has reached a maximum of 103 cycles at the highest
value of	. A check for systematic effects has been done by
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FIG. 1 (color online). Polyakov loop and its susceptibility as
a function of 	 on a 243 � 6 lattice and for a few �L values.
The susceptibility values have been multiplied by a factor of 250.
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repeating the determination with a different number of
cooling sweeps to obtain Q (15, 30, 45, and 60) or, at the
highest explored value of 	, on a larger 244 lattice. In
this way we finally obtain �Ið	cð�LÞÞ ¼ Zð	cð�LÞÞ�L, as
reported in the 4th column of Table I.

Final results for Tcð�IÞ=Tcð0Þ and for the three different
lattices explored are reported in Fig. 3. In all cases
a linear dependence in �2, according to Eq. (2), nicely
fits data. In particular we obtain R� ¼ 0:0299ð7Þ for
Nt ¼ 4 (�2=d:o:f: ’ 0:3), R� ¼ 0:0235ð5Þ for Nt ¼ 6
(�2=d:o:f: ’ 1:6), and R� ¼ 0:0204ð5Þ for Nt ¼ 8
(�2=d:o:f: ’ 0:7).

We have performed various tests to check the stability of
our fits. If we change the fit range, e.g., by excluding, for
each Nt, the 1–2 largest values of �I, results for R� are

stable within errors. If we assume a generic power like
behavior Tcð�Þ=Tcð0Þ � 1 ¼ A�
, we always obtain that 

is compatible with 2 within errors; if we fix 
 to values
which would imply a nonanalyticity at � ¼ 0, e.g., 
 ¼ 1,
we obtain a �2=d:o:f: of Oð10Þ or larger.
Assuming Oða2Þ corrections we can extrapolate the con-

tinuum valueR� ¼ 0:0175ð7Þ,�2=d:o:f: ’ 0:97 (see Fig. 4).
Our result is therefore that Tc decreases in presence of a real
nonzero � parameter. This is in agreement with the large N
expectation that we discuss in the following, as well as
with arguments based on the semiclassical approxima-
tion discussed in Ref. [15] for N ¼ 2 and with model
computations [16].
Large N estimate.—We present now a simple argument

to estimate the dependence of Tc on � in the large N limit.
Since the transition is first order, around the critical tem-
perature we can define two different free energy densities
fcðTÞ and fdðTÞ corresponding to the two different phases,
confined and deconfined, which cross each other at Tc with
two different slopes. The slope difference is related to the
latent heat. Indeed the energy density is

� ¼ T2

Vs

@

@T
logZ; Z ¼ exp

�
�VsfðTÞ

T

�
; (9)

hence, � ¼ �T2@ðf=TÞ=@T. Close enough to a first order
transition we may assume, apart from constant terms,
fc=T ¼ ActþOðt2Þ and fd=T ¼ AdtþOðt2Þ, where
t � ðT � TcÞ=Tc is the reduced temperature. The latent
heat is therefore �� ¼ �d � �c ¼ TcðAc � AdÞ.
A nonzero � modifies the free energy, at the lowest

order, as follows:

fðT; �Þ ¼ fðT; � ¼ 0Þ þ �ðTÞ�2=2þOð�4Þ; (10)

where �ðTÞ is the topological susceptibility. �ðTÞ is in gen-
eral different in the two phases, dropping at deconfinement
[17–19]; hence, the condition for free energy equilibrium
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FIG. 2. Determinations of the renormalization constant Z on a
164 lattice. The dashed line is a cubic interpolation of data.
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FIG. 3 (color online). Tcð�Þ=Tcð0Þ as a function of �2 for
different values of Nt. Dashed lines are the result of linear fits,
as reported in the text, then extrapolated to �2 > 0.

TABLE I. Collection of results obtained for 	c and Tc.

Lattice �L 	c �I Tcð�IÞ=Tcð0Þ
163 � 4 0 5.6911(4) 0 1

163 � 4 5 5.6934(6) 0.370(10) 1.0049(11)

163 � 4 10 5.6990(7) 0.747(15) 1.0171(12)

163 � 4 15 5.7092(7) 1.141(20) 1.0395(11)

163 � 4 20 5.7248(6) 1.566(30) 1.0746(10)

163 � 4 25 5.7447(7) 2.035(30) 1.1209(10)

243 � 6 0 5.8929(8) 0 1

243 � 6 5 5.8985(10) 0.5705(60) 1.0105(24)

243 � 6 10 5.9105(5) 1.168(12) 1.0335(18)

243 � 6 15 5.9364(8) 1.836(18) 1.0834(23)

243 � 6 20 5.9717(8) 2.600(24) 1.1534(24)

323 � 8 0 6.0622(6) 0 1

323 � 8 5 6.0684(3) 0.753(8) 1.0100(11)

323 � 8 8 6.0813(6) 1.224(15) 1.0312(14)

323 � 8 10 6.0935(11) 1.551(20) 1.0515(21)

323 � 8 12 6.1059(21) 1.890(24) 1.0719(34)

323 � 8 15 6.1332(7) 2.437(30) 1.1201(17)
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fc ¼ fd, which gives the value of Tc, will change as a
function of �. The dependence of � on T simplifies in the
large N limit, being independent of T in the confined phase
and vanishing in the deconfined one [18,19]. Hence we can
write, for N ! 1,

fc=T ’ Actþ ð�=TÞ�2=2; fd=T ’ Adt; (11)

where� is, fromnowon, theT¼0 topological susceptibility.
The equilibrium condition then reads ðAc � AdÞt ¼
ð�=TcÞ�2=2þOð�4Þ, giving

Tcð�Þ
Tcð0Þ ¼ 1� �

2��
�2 þOð�4Þ: (12)

In the large N limit we have [9,18,20],

�

�2
’ 0:0221ð14Þ; ��

N2T4
c

’ 0:344ð72Þ;
Tcffiffiffiffi
�

p ’ 0:5970ð38Þ

apart from 1=N2 corrections; hence, we get

R� ¼ �

2��
’ 0:253ð56Þ

N2
þOð1=N4Þ: (13)

The leading 1=N estimate for SUð3Þ is then R� ’
0:0281ð62Þ. This is larger than our determination, even if
marginally compatible with it: a possible interpretation is
that for SUð3Þ the behavior of � at Tc is smoother than the
sharp drop to zero that we have assumed.

Notice that the 1=N2 dependence of R� is in agreement
with general arguments [21] predicting the free energy to
be a function of the variable �=N as N ! 1 (see also
Refs. [9,15]). For the same reason we expect Oð�4Þ cor-
rections to Eq. (12) to be of Oð1=N4Þ: they are indeed
related to Oð�4Þ corrections to the free energy, which have

been measured at T ¼ 0 by lattice simulations [22–24] and
are known to be small and of order 1=N2.
It would be interesting to extend the present study to

N > 3, in order to check the prediction in Eq. (13), and to
N ¼ 2, in order to compare with the results of Ref. [15].
We conclude with a few remarks and speculations re-

garding the phase structure in the T � �2 plane. In Fig. 3
we have drawn the critical line, for differentNt and up to �

2

terms, as fitted from �2 < 0 simulations, and its continu-
ation to �2 > 0; however, other transition lines may be
present, as it happens for the T ��2

B plane. For �2
B < 0

one finds unphysical transitions, known as Roberge-Weiss
lines [25], which are linked to the periodicity of the theory
in terms of imaginary �B. In the case of a � parameter, no
periodicity is expected for imaginary �, CP invariance
being explicitly broken for any �I � 0; hence, we cannot
predict other possible transitions for �2 < 0. A 2� period-
icity is instead expected for real values of �, with the
possible presence of a phase transition at � ¼ � where
CP breaks spontaneously.
Our simulations have given evidence, for �2 < 0, only

for a deconfinement transition line, describable by a �2

behavior up to j�j � �. We expect continuity of such
behavior, at least for small real �, while nontrivial correc-
tions may appear as � approaches �. However, following
Ref. [21] and the arguments above, we speculate that, at
least for large N, Tcð�Þ be a multibranched function, domi-
nated by the quadratic term down to � ¼ �

Tcð�Þ=Tcð0Þ ’ 1� R�min
k
ð�þ 2�kÞ2; (14)

where k is a relative integer: in this case periodicity in �
implies cusps for Tcð�Þ at � ¼ ð2kþ 1Þ�, where the decon-
finement line could meet the CP breaking transition present
also at T ¼ 0. Therefore the phase diagram at real � could
have some analogies with that found at imaginary �B.
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