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We show that transient resonances occur in the two-body problem in general relativity for spinning
black holes in close proximity to one another when one black hole is much more massive than the other.
These resonances occur when the ratio of polar and radial orbital frequencies, which is slowly evolving
under the influence of gravitational radiation reaction, passes through a low order rational number. At such
points, the adiabatic approximation to the orbital evolution breaks down, and there is a brief but order
unity correction to the inspiral rate. The resonances cause a perturbation to orbital phase of order a few
tens of cycles for mass ratios ~107®, make orbits more sensitive to changes in initial data (though not
quite chaotic), and are genuine nonperturbative effects that are not seen at any order in a standard post-
Newtonian expansion. Our results apply to an important potential source of gravitational waves, the
gradual inspiral of white dwarfs, neutron stars, or black holes into much more massive black holes.
Resonances’ effects will increase the computational challenge of accurately modeling these sources.
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Introduction.—The dynamics of a two-body system
emitting gravitational radiation is an important problem
in general relativity. Binary systems of compact bodies
undergo a radiation-reaction-driven inspiral until they
merge. There are three different regimes in the parameter
space of these systems: (i) the weak field, Newtonian
regime r >> 1, where r is the orbital separation in units
where G=c=M =1 and M is the total mass [1];
(i1) the relativistic, equal mass regime r ~ 1, € ~ 1 (where
& = u/M is the mass ratio with u being the reduced mass)
[2]; and (iii) the relativistic, extreme mass ratio regime
r~1, € < 1, which is characterized by long, gradual
inspirals on a time scale ~&~! and for which computa-
tional methods are currently under development.

In this Letter, we show that in the relativistic, extreme
mass ratio regime, there are qualitatively new aspects to the
two-body problem in general relativity, namely the effects
of transient resonances. While resonances are a common
phenomenon in celestial mechanics when three or more
objects are involved [3], they can occur with just two
objects in general relativity, due to its nonlinearity. They
are nonperturbative effects for highly relativistic sources
and are not seen at any order in standard post-Newtonian
expansions of inspiral solutions. Their existence is closely
related to the onset of chaotic dynamics, which has pre-
viously been shown to occur in general relativity in other,
cosmological contexts [4].

The resonances have direct observational relevance:
Compact objects (1 = u/My < 10, where M, is the
Solar mass) inspiraling into much larger black holes are
expected to be a key source for gravitational wave detec-
tors. Advanced LIGO (Laser Interferometer Gravitational
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Wave Observatory) will potentially observe 3-30 such
events per year, with 50 < M /M < 1000 [5], and future
space-based detectors are expected to detect such inspirals
with 10* < M/M, < 107 out to cosmological distances
at a rate of ~50 per year [6]. The observed gravitational
wave signal will be rich in information. For example, one
will be able to extract a map of the spacetime geometry of
the central object and test if it is consistent with general
relativity’s predictions for a black hole [5,7]. Such map-
ping will require accurate theoretical models of the gravi-
tational waveforms, which remain phase coherent with the
true waveforms to an accuracy of ~1 cycle over the large
number ~&~ ! ~ M/u ~ 10°-10° of cycles of inspiral.
Over the past decade, there has been a significant research
effort aimed at providing such accurate models [8].
Resonances will complicate this enterprise, as we discuss
below.

Method of analysis.—Over time that are
short compared to the dephasing time ~& , inspirals
can be accurately modeled using black hole perturbation
theory, with & as the expansion parameter. The leading-
order motion is geodesic motion on the background Kerr
metric. At the next order, the motion is corrected by the
particle’s self-force or radiation reaction force, for which a
formal expression is known [9], and which has been com-
puted explicitly in special cases; see, e.g., the review
Ref. [8]. Over the longer inspiral time scale ~&~!, it is
necessary to augment these methods with two time scale
expansions which are currently under development
[10,11]. In this framework the leading- order motion is
an adiabatic inspiral, and there are various post-adiabatic
corrections.
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Geodesic motion in the Kerr spacetime is an integrable
dynamical system, and it is useful to use the corresponding
generalized action-angle variables to parameterize the in-
spiral. The resulting equations are [12]:

dq,
% — w0, + e8Py g, ) + O(&2), (1a)
dJ,
=2 = 5GY (¢, 4 D) + G (g0 4 D) + O(). (1b)

Here 7 is Mino time [13], and J, are the conserved inte-
grals of geodesic motion given by J, = (E/u,
L./u, Q/u?), where E is the energy, L, is the angular
momentum, and Q the Carter constant. The variables g, =
(91 9 g6 94) are generalized angle variables conjugate to
Mino time [10]. The right-hand sides at O(&°) describe
geodesic motion, with fundamental frequencies w,, wy
and w 4. The forcing functions g&l), Gg,l) and G(Vz) are due
to the first-order and second-order self-forces and are
2ar-periodic in g4 and ¢,. The piece of G\ that is even
under gy — 27 — q4, q, — 27 — ¢,, and the piece of g(al)
that is odd are the dissipative self-force, and the remaining
piece is the conservative self-force [10].

In the limit &€ — 0, solutions to Egs. (1a) and (1b) can be
derived using the two time scale method, which essentially
consists of an ansatz for the dependence of the solutions on
& which is more complicated than a Taylor series expansion,
that is justified a posteriori [10,14]. The leading-order
solutions are given by the following adiabatic prescription:
Drop the forcing terms gs),l) and G(f), and replace G by its
average over the 2-torus parameterized by gy, ¢,. It is now
known how to evaluate this averaged force explicitly
[13,15], although generic adiabatic inspirals have not yet
been computed numerically.

Consider now postadiabatic effects. The dynamical sys-
tem (1) consists of a perturbed, integrable Hamiltonian
system. Resonances in this general type of system have
been studied in detail and are well understood [14], and
we can apply the general theory to the present context. The
existence of resonances in this context has previously been
suggested by Refs. [16,17]. We will present three different
treatments of the resonances: (i) an intuitive, order of mag-
nitude discussion, which is sufficient to deduce their key
properties; (ii) a numerical treatment; and (iii) a sketch of a
formal analytic derivation. A more detailed treatment will
be presented in Ref. [12].

Order of magnitude estimates.—Suppose that we
have an adiabatic solution, which will be of the form
qo(1,8) = ¢, (e1)/e, J,(7,e) = J,(e7). Consider now
the postadiabatic correction terms in Egs. (1a) and (1b),
near some arbitrarily chosen point 7 = 0. We expand ¢, as
Go = Qoo + weoT + @goT> + O(73), where subscripts 0
denote evaluations at 7 = 0, and we expand ¢, similarly.
We also expand GV as a double Fourier series:

G (qg, 41, I) = T4, G (J)eika0+ 14 wwhere the 00 term
is the adiabatic approximation, and the remaining terms
drive postadiabatic effects. Inserting the expansions of gg
and ¢g,, we find for the phase of the (k,n) Fourier component

(constant) + (kwgg + nw,o)7T + (kwgy + na,)7> + ...
(2)

Normally, the second term is nonzero, and thus the force
oscillates on a time scale ~1, much shorter than the inspiral
time scale ~1/g, and so the force averages to zero.
However, when the resonance condition kwyy + nw,g =0
is satisfied, the (k, n) force is slowly varying and cannot be
neglected, and so gives an order-unity correction to the
right hand side of Eq. (1b). The duration of the resonance
is given by the third term in (2) to be T, ~ 1/\v@ ~
1//ve, where v = |k| + |n]| is the order of the resonance;
after times longer than this the quadratic term causes the
force to oscillate and again average to zero. The net change

in the action variables J, is therefore AJ, ~ J T ~

£T,es ~ \&/v. After the resonance, this change causes a
phase error A ¢ that accumulates over an inspiral, of order
the total inspiral phase ~1/¢& times AJ/J ~ y/&/v, which
gives Ap ~ 1/ /ve.

This discussion allows us to deduce several key proper-
ties of the resonances. First, corrections to the gravitational
wave signal’s phase due to resonance effects scale as the
square root of the inverse of mass of the small body. These
corrections thus become large in the extreme-mass-ratio
limit, dominating over all other postadiabatic effects,
which scale as g% ~ 1.

Second, they occur when w,/w, is a low order rational
number. There is a simple geometric picture corresponding
to this condition [17,18]: the geodesic orbits do not ergodi-
cally fill out the (gg, g,) torus in space as generic geodesics
orbits do but instead form a one-dimensional curve on the
torus. This implies that the time-averaged forces for these
orbits are not given by an average over the torus, unlike the
case for generic orbits.

Third, they occur only for noncircular, nonequatorial
orbits about spinning black holes. For other cases, the

forcing terms G depend only on gy, or only on ¢,, but
(1

not both together, and thus the Fourier coefficient G, will
vanish for any resonance.

Fourth, they are driven only by the spin-dependent part
of the self-force, for the same reason: spherical symmetry
forbids a dependence on ¢4 in the zero-spin limit.

Fifth, they appear to be driven only by the dissipative
part of the self-force, and not by the conservative part,
again because the forcing terms do not depend on both g
and g,. We have verified that this is the case up to the post-
Newtonian order that spin-dependent terms have been
computed [19], and we conjecture that it is true to all
orders. The reason that this occurs is that the conservative

sector of post-Newtonian theory admits three independent
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conserved angular momentum components; the ambigu-
ities in the definition of angular momentum are associated
with radiation, in the dissipative sector. As a consequence,
the perturbed conservative motion is integrable to leading
order in g, and an integrable perturbation to a Hamiltonian
cannot drive resonances.

Sixth, although the resonance is directly driven only by
dissipative, spin dependent self-force, computing reso-
nance effects requires the conservative piece of the first
order self-force and the averaged, dissipative piece of the
second order self-force. Those pieces will cause O(1)
corrections to the phases over a complete inspiral [10],
and the kicks AJ,, produced during the resonance depend
on the O(1) phases at the start of the resonance.

Seventh, resonances give rise to increased sensitivity to
initial conditions, analogous to chaos but not as extreme as
chaos, because at a resonance information flows from a
higher to a lower order in the perturbation expansion. For
example, we have argued that changes to the phases at O(1)
prior to the resonance will affect the postresonance phasing
at O(1/4/e). Similarly, changes to the phases at O(y/e)
before resonance will produce O(1) changes afterwards.
With several successive resonances, a sensitive depen-
dence on initial conditions could arise.

Numerical integrations.—The scaling relation A¢ «
1/4/e suggests the possibility of phase errors large com-
pared to unity that impede the detection of the gravitational
wave signal. To investigate this possibility, we numerically
integrated the exact Kerr geodesic equations supplemented
with approximate post-Newtonian forcing terms. While
several such approximate inspirals have been computed
previously [20], none have encountered resonances, be-
cause resonances require noncircular, nonequatorial orbits
about a spinning black hole with non orbit-averaged forces,
which have not been simulated before.

For the numerical integrations, we use instead of ¢,
the variables g, = (g, G,» 9. 44) = (t, ¥, x, ) where
and y are the angular variables for r and 6 motion
defined in Ref. [13]. The equations of motion (1) in these
variables are

t,= oG9 G,7J), b= d4(G9. 4,3, (3a)

Gor = @9(Gp J) + n)(Gg, G, ) + 08,  (3b)
Grr = @3, 1) + h"(Gy, 3., J) + O(2), (3c)
I, = eHW (39, 3, J) + O(e?). (3d)

Here 7 is Mino time [13], the frequencies @ are given in
Ref. [13], and hfxl) and Hs,l) are given in terms of the
components of the four-acceleration in Ref. [21].

We parameterize the three independent components of

the acceleration in the following way: a® = a’ef +
a’es +ayef suPeled + (a'u; + a’ug)u®, where i is
the four-velocity and é; and é; are unit vectors in the
directions of d, and d4. We compute the dissipative pieces

of a’, a’ and a | from the results of Ref. [22], as functions
of F=r+a*/(4r), E,=E—1, and K= Q + a’L? +
a’E,, and then expand to O(a?) and to the leading post-
Newtonian order at each order in a [12]. We also add the
conservative component, expressed similarly and com-
puted to O(a) and to the leading post-Newtonian order
[23]; see Ref. [12].

We numerically integrate Eqgs. (3) twice, once using
the adiabatic prescription, and once exactly, and then sub-
tract at fixed ¢ to obtain the postadiabatic effects. The
adiabatic prescription involves numerically integrating
the right hand sides over the torus parameterized by g,
g, at each time step, where g, = F,.(q,)/F,2m), F.(G,) =
J4dg,/[®,.(g, J)], with a similar formula for g4. This is
numerically time consuming, but the adiabatic integration
can take time steps on the inspiral time scale ~1/& rather
than the dynamical time scale ~1.

Typical results are shown in Fig. 1, which shows the
adiabatic inspiral for a mass ratio of £ = 3 X 107° with
a = 0.95, in terms of the relativistic eccentricity e, semi-
latus rectum p, and orbital inclination 6;,., which are
functions of E, L,, and Q [24]. This example has a strong
resonance at wy/w, = 3/2 that generates jumps in the
conserved quantities of order a few percent times /¢ and
causes phase errors over the inspiral of order 20 cycles.
Phase errors of this magnitude will be a significant impedi-
ment to signal detection with matched filtering. We find
that the resonance effects are dominated by the O(a?)
terms, and the effect of the O(a) terms are small.
Additional resonances can occur at higher values of p,
but the dominant resonances are likely to be the low-order
ones in the relativistic regime of small p.

Analytic derivation.—In terms of the slow time variable
7 = g7, the solutions of the dynamical system (1) away
from resonances can be expressed as an asymptotic expan-
sion in ¢ at fixed 7 [10,14]:

4ulr.0) = [WO@ + VU@ + 0@
I (7, 8) = TVF) + eTP() + 0(e). (4b)

The leading-order terms give the adiabatic approximation
described above, and satisfy [10] 1//539)7 = w [J9], T (,,0)7 =

(G J©7, where the angular brackets denote an average
over the (q,, gy) torus. The subleading, post-1/2-adiabatic
order terms satisfy \7%2) — <G§,1)>J# Jﬁ,{/z) = AJS,I/Z)(S(T),
L/f%z) =wy;,J ﬂ/ 2| where the &-function source term
arises at a resonance, taken to occur at 7 = 0.

Near the resonance we use an ansatz for the solutions
which is an asymptotic expansion in /¢ at fixed + = /e7,
and then match these solutions onto preresonance and
postresonance solutions of the form (4) [14]. To linear
order in the force Fourier coefficients (an approximation
which is valid here to within a few percent [12]), the jumps
in the action variables for a resonance (k, n) can be
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FIG. 1 (color online). [Top] The adiabatic inspiral computed
from our approximate post-Newtonian self-force, for a mass
ratio & = u/M = 3 X 107°, with black hole spin parameter
a = 0.95, with initial conditions semilatus rectum p = 9.0M,
eccentricity e = 0.7, and orbital inclination 6;,. = 1.20. The
bottom curve is e, the middle curve is 6;,., and the top curve
is ratio of frequencies wy/w,, shown as functions of p. [Middle]
The fluctuating, dissipative part of the first-order self-force
causes a strong resonance when wy/w, = 3/2 at p = 8.495.
Shown are the corrections to the energy E, angular momentum
L, and Carter constant Q, as functions of p, scaled to their values
at resonance and divided by the square root 4/ u/M of the mass
ratio. The sudden jumps at the resonance are apparent, with the
largest occurring for the Carter constant. [Bottom] The lower
curve is the correction to the number of cycles ¢/(2m) of
azimuthal phase of the inspiral caused by the fluctuating, dis-
sipative part of the first order self-force. The sharp downward
kick due to the resonance at p = 8.495 can be clearly seen. The
resonant corrections to the number of cycles of r and # motion
are similar. These phase shifts scale as 4/M/u. The upper curve
is the postadiabatic phase correction due to the conservative
piece of the first order self-force, which is considerably smaller
and is independent of the mass ratio.

computed by substituting the adiabatic solutions into the
right-hand side of Eqgs. (1a) and (1b) and solving for the
perturbation to the action variables. The result is

VIS S

2
s#0 |

o X
Tas] exp[sgn(as) < + is,\/res]GS}S)k,m,
where Y., = kqy + nq,, @ = kwy; + nw, ; and all quan-
tities are evaluated at the resonance 7 = 0 using the adia-
batic solution. In Ref. [12] we give the exact expression
for this quantity that does not linearize in the force Fourier
coefficients. We note that evaluating the phase y,. requires
knowledge of the second subleading, O(1) phase in

Eq. (4a), which in turn requires knowledge of the force
components gg) , G(Vl) and (G(,,z) yin Eq. (1) [10]. In addition,
to obtain the phase to O(1) accuracy after the resonance, it
is necessary to also compute the subleading, O(g) jumps in
J, and O(1) jumps in g,, which are given in Ref. [12].

Discussion.—The dynamics of binary systems in general
relativity is richer than had been appreciated. Transient
resonances occurring during the inspiral invalidate the
adiabatic approximation and give rise to corrections to the
orbital phase that can be large compared to unity. It will be
necessary to incorporate resonances into theoretical models
of the gravitational waveforms for inspirals of compact
objects into massive black holes, an important gravitational
wave source. This will require knowledge of the second-
order gravitational self-force and will be challenging.
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