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We reveal the subdiffusive dynamics of paramagnetic colloids subjected to a two state flashing potential

generated by periodic modulation of a magnetic bubble lattice. The particles perform a random walklike

motion with antipersistent nature, showing for certain field parameters a crossover from subdiffusive to an

enhanced diffusive behavior. We elucidate the stationary nature (no aging) of the subdiffusive process and

stress its similarity with the random walk on a random walk model.
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Self-diffusion of colloidal particles arises due to con-
tinuous transfer of momentum by the solvent molecules
[1], and it is characterized by a mean square displacement
(MSD) proportional to time. In complex environments, like
in crowded suspensions of hard spheres [2], granular ma-
terials [3], viscoelastic media [4], and in many biological
systems [5], diffusion is often anticipated by subdiffusion,
where the exponent of the power law in the MSD is less
than one. Subdiffusion is usually attributed to trapping or
obstruction, and understanding its origin is crucial in both
fundamental [6] and applied research [7]. When dealing
with individual colloids in simple fluids, the absence of
interacting neighbors excludes subdiffusion a priori,
which, however, can be observed by placing traps or ob-
stacles along the particle path via chemical modification
or physical actuation. In the first case, for instance, one
can functionalize the particle surface and a nearby sub-
strate with complementary strands of DNA making them
‘‘sticky’’ at a temperature close to the melting of the DNA
[8]. On the other hand, there are many ways to manipulate
colloidal particles via external fields that may be employed
to confine or release the particles via remote control.
In particular, magnetically patterned substrates have shown
such capabilities with magnetic colloids [9], opening up
the possibilities to induce anomalous kinetics in systems
showing otherwise conventional diffusion.

In this context, we report on the (sub-)diffusive behavior
of paramagnetic colloids moving through a flashing poten-
tial obtained via external modulation of the stray field of a
magnetic bubble lattice. Depending on the applied field
parameters, we observe different regimes of motion rang-
ing from trapping to enhanced (nonthermal) diffusion.
In particular, we observe robust subdiffusive motion, with
MSD growing as

ffiffi
t

p
and lasting in some cases, up to three

orders of magnitude in time. In the subdiffusive regime, the
particles perform an antipersistent random walk with an
astonishing similarity to the random walk on a random

walk (RWRW) model introduced in [10], as a nontrivial
example of correlated RW. Our results also demonstrate
that flashing potentials, which often have been employed to
ratchet molecules and colloids in the presence of non-
negligible thermal fluctuations [11], can be used to induce
and conveniently control the diffusive properties of the
particles.
Figure 1(a) shows a schematic of our experimental

system. We use paramagnetic colloids with diameter
d ¼ 2:8 �m (Dynabeads M-270) dispersed in water and
deposited above the surface of a ferrite garnet film (FGF)
with uniaxial anisotropy. The FGF has composition
Y2:5Bi0:5Fe5�qGaqO12 (q ¼ 0:51), a thickness of �5 �m,

and saturation magnetization Ms ¼ 1:7� 104 A=m, and
was grown by dipping liquid phase epitaxy on a (111)
oriented gadolinium gallium garnet substrate. The FGF
was previously modified to display a hexagonal array
of magnetic ‘‘bubbles’’. These are cylindrical ferromag-
netic domains of radius R ¼ 4:2 �m, lattice constant
a ¼ 11:6 �m, all with the same out-of-plane magnetiza-
tion and regularly arranged in a film of reverse magnetiza-
tion. The size of these domains can be easily manipulated
with a magnetic field applied perpendicular to the film.
In particular, a field, H ¼ H0ez, parallel (antiparallel) to
the bubble magnetization increases (decreases) the size of
the bubbles.
In contrast to Ref. [12], where a precessing field

was applied to drive the particles into rotating orbits or
ballistic trajectories, we here use a square-wave field,
H ¼ H0sgnðsinð!tÞÞez, where sgnðxÞ is the signum func-
tion and ! denotes the frequency. The field switches
between �H0 and periodically changes the radii of the
bubbles, flashing the potential between two states (1 $ 2).
We experimentally observe, and independently confirm
through numerical calculations, Fig. 1(c), that when
H0 > 0:1Ms, the field expands the bubbles (state 1) and
the energy displays a paraboloidlike minimum within the
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magnetic domains, while when the field shrinks the bub-
bles (state 2), six regions of energy minima with triangu-
lar shape appear at the vertices of the Wigner-Seitz cell
around each bubble (details are given in Ref. [13]). As a
consequence, during the transition 1 ! 2, a particle can
jump to 6 possible places [top of Fig. 1(c)], while in the
transition 2 ! 1, the possibilities reduce to 3 [bottom of
Fig. 1(c)]. In both states, the potential preserves its spatial
symmetry; i.e., no dynamical symmetry breaking occurs
unlike what happens in [12,14], and after N cycles the
particle motion resembles a random walk on a hexagonal
lattice, as shown in Fig. 1(b) (see video in [13]). The
length of the walker step is given by one side of the
Wigner-Seitz cell, a=2 ¼ 5:8 �m, while the time be-
tween steps is controlled by the applied frequency, i.e.,
ts ¼ �=!.

We record the position of a particle at 60 fps for
�30 min inside the observation area (179� 231 �m2),
and measure the MSD as a temporal moving average,
hðxðt0Þ � xðtþ t0ÞÞ2i � t�, where x denotes the position
of the particle projected onto one of the crystallographic
axes of the lattice [15]. The exponent � of the power
law distinguishes the diffusive (� ¼ 1) from the subdif-
fusive (�< 1) dynamics.

In Fig. 2(a), we show the effect of varying the amplitude
of the applied fieldH0 at constant frequency (! ¼ 6:2 s�1).
Small fields, H0 < 0:1Ms, are not able to modify the origi-
nal landscape, and during the transition from 2 ! 1, the
particle can only return back to the bubble it left previously.
As a consequence, the particle performs localized oscilla-
tions and the corresponding MSD saturates very fast.
IncreasingH0 modifies themagnetic landscape as indicated
above, and the particle is capable to leave one bubble,
eventually passing to a different one during the transition
2 ! 1. For H0 ¼ 0:13Ms, the MSD shows an initial sub-
diffusive regime, characterized by an exponent �< 1, fol-
lowed by a diffusive mode after a crossover time �� 10 s.
The same exponent was observed at different amplitudes,
H0 2 ½0:1; 0:28�Ms, while � decreases by increasing the
field strength, and for H0 � 0:29Ms the subdiffusion is

FIG. 2 (color online). (a) MSDs versus time for a paramag-
netic particle under an external field with ! ¼ 6:2 s�1 and
H0 ¼ 0:09Ms (empty squares), H0 ¼ 0:13Ms (crosses), continu-
ous line denotes average over the oscillations, and H0 ¼ 0:37Ms

(filled circles). (b) Smoothened MSDs (oscillations averaged
out) versus time for an applied field with fixed H0 ¼ 0:14Ms

and different frequencies, ! ¼ 5:6 s�1 (empty squares),
! ¼ 15:7 s�1 (crosses), and ! ¼ 34:5 s�1 (filled circles). Inset
shows the crossover time � [blue (gray)] from subdiffusive to
diffusive behavior versus the frequency ! with a power law fit
(continuous line).

FIG. 1 (color online). (a) Scheme showing a magnetic bubble
lattice with magnetizationMs [the Wigner-Seitz cell is shaded in
blue (gray)] with a paramagnetic particle on top of it subjected
to a square wave magnetic field H normal to the film.
(b) Representative trajectory of one particle (! ¼ 12:6 s�1,
H0 ¼ 0:14Ms), where the black points denote the position of
the centers of the magnetic bubbles. (c) Contour plots of the
normalized magnetostatic energy, E=kBT, of one particle above
the magnetic bubble lattice at two different times separated by
half a period. The energy bar goes from �103kBT (white) to
�105kBT [blue (gray)].

PRL 109, 070601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

17 AUGUST 2012

070601-2



completely lost. In this case, the particles behave as random
walkers on a hexagonal lattice from the very beginning.
The diffusion coefficient can be estimated by using the
expression for the random walk on isotropic lattices,

D ¼ l2

4ts
where l ¼ a=2 is the distance between traps [16].

In particular, for H0 ¼ 0:37Ms we find that Dexp ¼
limt!1MSDðtÞ=2t ¼ 14:6 �m2 s�1 and the previous esti-
mation gives D ¼ 15:0 �m2 s�1. We stress that the diffu-
sion coefficientDexp, arising from nonthermal fluctuations,

exhibits a giant enhancement by two decades as compared
to the thermal diffusion coefficient of a paramagnetic
colloid on a glass plate (0:14 �m2 s�1 [17]), and five
decades larger than on a garnet film with no applied field
(� 10�4 �m2 s�1 [18]). We note that the oscillations in
the MSDs of Fig. 2(a) result from the periods of local
back and forth motion of the particles, and are averaged
out in Fig. 2(b).

In a second set of experiments, we measure the exten-
sion of the subdiffusive regime by keeping fixed the am-
plitude (H0 ¼ 0:14Ms) and varying the frequency of the
field. As shown in Fig. 2(b), � decreases with increasing
frequency, and can be well fitted with a power law,
��!�1 (inset). More importantly, the value of the sub-
diffusive exponent is quite robust, remaining constant over
the whole range of frequencies, falling within the range of
� 2 ½0:43 . . . 0:58�. The observed random walks display
notorious features of subdiffusion pertinent to hindered
motions, i.e., diffusion on a self-similar structure. We later
interpret this behavior on physical grounds, but first, we
will rationalize our observations in terms of an appropriate
subdiffusive model. These models can be essentially di-
vided into two classes: the models with stationary incre-
ments, and those intrinsically with nonstationary ones.
Fractional Brownian motion and the random walk on a
random walk model (RWRW) [10], which describes the
random motion of a tagged particle on a random path, fall
in the first class. Continuous time random walk (CTRW)
models like the comb model [19] mimicking trapping,
belong instead to the second class. In our case, the absence
of aging suggests that we have to do with a model with
stationary increments. This property is demonstrated in
Fig. 2 of Ref. [13] as a constant ratio MSDðtÞ= ffiffi

t
p

, which
definitively rules out CTRWlike models.

To quantify the characteristics of the motion, we refer to
two direct observables: the position-based probability dis-
tribution function (PDF) and the step-step autocorrelation
function, defined as Cs ¼ hsð0Þ � sðtÞi=hsð0Þ2i where sðtÞ
denotes the walker step at time t. It is apparent from direct
observations of the wandering motion of the particles (see
Fig. 1 in [13]) that successive displacements of our walkers
on the lattice are far from being independent. This trans-
lates into an oscillating function that evidences the anti-
persistent nature of the randomwalk; i.e., after a completed
jump, a particle has an increased probability for returning
to its previous location compared to going elsewhere.

The step-step correlation function (inset of Fig. 3) resem-
bles to a large extent that of the RWRW model. This is
stressed by the similarity of the decay (1=

ffiffi
t

p
) of the enve-

lopes of Cs in both situations as displayed in Fig. 3, where
the experimentally obtained jCsðtÞj is compared to the
simulated one for RWRW. The two correlation functions
show very similar behavior until the one for the experi-
mental system starts to be dominated by noise.
Let us now turn to the form of the PDF for the time

domain when the motion is not yet dominated by noise.
Although the PDF of the process is not uniquely deter-
mined by its correlation function, again the corresponding
PDFs in our experimental system and in the RWRWmodel
are strikingly similar. In the RWRW model, this PDF is
non-Gaussian and given by the integral expression [20],

pðx; bÞ ¼ 1

�

ffiffiffi
1

b

s Z 1

0

1ffiffiffi
s

p exp

�
� x2

2s
� s2

2b

�
ds (1)

with the parameter b given by the the dispersion of the

observed distribution via � ¼
ffiffiffiffiffi
2
�b

q R1
0 s expð� s2

2bÞds ¼ffiffiffiffiffiffiffiffiffiffiffiffi
b=2�

p
. In particular, we measure the PDF of the variance

�xN ¼ xi � xiþN , with N being the number of elapsed
frames. Figure 4 shows the normalized PDFs for a particle
under a field with H0 ¼ 0:14Ms and ! ¼ 25:1 s�1, corre-
sponding to a crossover in theMSD occurring after c.a. 900
frames. For N ¼ 10 the PDF is clearly non-Gaussian, with
a central peak decreasing as N increases. It shows an
excellent agreement with the corresponding PDF of the
RWRW. On the other hand, in the long time diffusive
regime, when the correlation function is dominated
by noise (which is the case, e.g., for N ¼ 1000), the
PDF can be well fitted to a Gaussian by using the same
dispersion �.

FIG. 3 (color online). Absolute value of the normalized step-
step correlation function jCsj versus time for a paramagnetic
colloid subjected to an external field with ! ¼ 25:1 s�1 and
H0 ¼ 0:14Ms. Gray [blue (gray)] line denotes the jCsj calculated
for the RWRW model. Inset shows the oscillations of Cs.
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To justify the origin of subdiffusion, let us consider the
response of the magnetic bubbles to the applied field. The
magnetic bubbles exhibit a certain degree of randomness in
their shapeduringexpansionor contractiondue to thepresence
of pinning sites and other inhomogeneities which exert an
effective frictional force against their motion [21]. These
deformations are not reproducible upon reapplication of the
field and, as a consequence, they translate into a dynamic
disorder. This dynamic disorder, which was considered in
[22] as bubble ‘‘polydispersity’’, creates lattice neighbour-
hoods where the spatial symmetry of the energy minima
around the bubbles is temporary lost. As a consequence of
this disorder, one particlemay occasionally encounter a region
in which its dispersive motion is hindered while continuously
moving back and forth between neighbouring bubbles. The
dependence of the subdiffusive regimewith the frequency can
be explained by considering the behavior of a system under
periodic forcing with low disorder. When the forcing is too
fast, the particle feels an average potential coming from the
vibrations of the bubbles and its trajectory remains unper-
turbed with respect to the situation in absence of disorder. In
contrast, at low frequencies, the particle is capable to explore
the effective potential, and the effect of this disorder appears.

To conclude,we found enhanced diffusion and subdiffusion
in a system of paramagnetic colloids subjected to a flashing
magnetic potential and demonstrate the correlated antipersis-
tent nature of the particle randomwalk similar to the RWRW.
Although subdiffusion in percolationlike structures has been
observed in soft matter system, like reptation in polymers and
biopolymers, this study is the first experimental demonstration
of this type of subdiffusion in periodic potentials. Thus, the
proposed method provides a new model system to study
anomalous transport phenomena arising from dynamic disor-
der, a situation encountered in many other physical systems

ranging from charge transport in random potentials [23],
membrane rafts [24] to proteins in cytoplasmic barriers [25].
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