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Because of the technical difficulty of building large quantum computers, it is important to be able to

estimate how faithful a given implementation is to an ideal quantum computer. The common approach of

completely characterizing the computation process via quantum process tomography requires an

exponential amount of resources, and thus is not practical even for relatively small devices. We solve

this problem by demonstrating that twirling experiments previously used to characterize the average

fidelity of quantum memories efficiently can be easily adapted to estimate the average fidelity of the

experimental implementation of important quantum computation processes, such as unitaries in the

Clifford group, in a practical and efficient manner with applicability in current quantum devices. Using

this procedure, we demonstrate state-of-the-art coherent control of an ensemble of magnetic moments of

nuclear spins in a single crystal solid by implementing the encoding operation for a 3-qubit code with only

a 1% degradation in average fidelity discounting preparation and measurement errors. We also highlight

one of the advances that was instrumental in achieving such high fidelity control.
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Introduction.—Because of the technical challenges of
building quantum computers, only small building blocks
of such devices have been demonstrated so far in a number
of different physical systems. In order to quantify how
closely these demonstrations come to the desired ideal
operations, the experiments are fully characterized via quan-
tum process tomography (QPT) [1,2], and, often, the aver-
age fidelity [3,4] between the experiment and the ideal
operator is calculated from the description of the estimated
process. The main drawback of this approach is that QPT
fundamentally requires an exponential number of experi-
ments. Moreover, the classical postprocessing of the data is
nontrivial, as the raw experimental data do not lead to a
physical description, and approaches such as maximum
likelihood or Bayesian estimation on an exponentially large
parameter space are needed to find the most appropriate
physical description [5]. Therefore, approaches based on
QPT to estimate the average fidelity are not practical, and
cannot be reasonably expected to be used even in systems
that are onlymoderately larger than the current experimental
state of the art. Here we solve this problem by showing that,
for an important class of quantum operations, the average
fidelity can be estimated efficiently, requiring a number of
experiments which are independent of the system size. This
new proposal is also practical, and enables the demonstra-
tion of processes which would not have been possible due to
the complexity of QPT.

Twirling.—It has been recently shown that if one wishes
to compare an experimental implementation of a quantum

process to the identity process (e.g., in the case of ideal
quantum memories), then it is possible to estimate the
average fidelity via a technique known as twirling
[6–10], with a number of experiments which depend only
on the desired accuracy of the estimate, not on the system
size—moreover, these experiments are simple to imple-
ment, requiring only local operations and measurements
[8]. The twirling procedure consists of applying a random
unitary before the process to be characterized, followed by
the inverse of this randomly chosen unitary. When these
unitaries obey certain symmetry properties, the resulting
invariant information about the noise under this symmetry
can be extracted by repeating the experiment with different
random choices. For example, if the twirling gates are
random permutations followed by tensor products of
single-qubit Cliffords, then information about the weights
of the noise terms can be determined [8]. The schematic
for such an experiment is depicted in Fig. 1(a), where the
process we would like to compare to the identity process,
E, is conjugated with Ci, an appropriately chosen random-

izing local operation, and M̂j is the measurement of the

parity of a subset of qubits in the computational basis.
For more general processes, in order to compare a given

process to a desired unitary evolution one could in princi-
ple apply the physical process under consideration, and
then apply the inverse of the unitary evolution we would
like to compare it against, finally measuring the overlap
between the initial state and the resulting state for a set
of initial states—this is, in essence, the definition of the
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average fidelity. The obstacle to implementing such a
protocol is that often one is attempting to demonstrate or
certify the implementation of a unitary, and a noiseless
implementation of its inverse cannot be assumed to be
available. One way [6,11,12] to address this problem is
to estimate the average fidelity over a set of quantum
processes that form a group by considering random se-
quences of such processes chosen to result in the identity
process—examples of such sets include the group of all
unitary processes as well as the Clifford group [13]. Such
motion-reversal benchmarking schemes suffer from two
shortcomings: they apply only to noise satisfying certain
strength conditions [12], and they only provide information
about the average over a set of processes instead of specific
information about a particular process. While this infor-
mation is useful, what is experimentally most useful is to
diagnose coherent control implementation errors, which, in
our experience, are highly process dependent. Therefore, it
is critical for the experimentalist to be able to characterize
a particular process.

Certification procedure.—The result we report here,
which sidesteps many of the shortcomings listed above,
is that the average fidelity between any physical process on
multiple qubits and any particular element of the Clifford
group can be estimated efficiently by a simple modification
to the twirling protocol, leading to the same favorable
scaling as experiments which compare a physical process
to the identity. If we define U to be the desired element of
the Clifford group, with the superoperatorUð�Þ ¼ U�Uy,
then the noisy implementation represented by the super-

operator ~U can be thought of as some noisy process E
followed by the application of U, i.e., ~U ¼ U � E.
Unitaries in the Clifford group include operations needed
to encode and decode quantum information to protect it
from noise [14]—in current approaches to fault tolerance
these operations comprise the vast majority of (if not all)
operations. Clifford group operations can also be used to
achieve universal fault-tolerant quantum computation with
the aid of specially prepared resource states [13,15], so
these operations are of great importance and utility for
quantum computation.

In order to see why the average fidelity can be estimated
efficiently for these operations, consider Fig. 1(b), which
modifies the original twirling protocol [8] by inserting the
identity process—in this casewritten asUy �U. One can in
principle combine all processes after the first application of
U in Fig. 1(b) into a newmeasurement. For a general unitary
process, this new measurement will be as hard to implement
as performing the process U itself. However, if U is an
element of the Clifford group [16], this results in the mea-
surement of the parity of a different set of qubits in a different
local basis (or equivalently, the measurement of a different
Pauli operator [13]) which can be precomputed efficiently
givenU, the local randomizingClifford operationCi, and the
original measurement M̂j, as depicted in Fig. 1(c), where

fðM̂j; Ci;UÞ ¼ UðCiM̂jC
y
i Þ ¼ UCiM̂jC

y
i U

y. In essence,

the protocol in Fig. 1(c) is the experiment, but the data
are analyzed according to Fig. 1(a) as described in [8,9],
which separates the noise E from the unitaryU. Because Ci

and U are elements of the Clifford group, and M̂j is a Pauli

observable, fðM̂j; Ci;UÞ can be computed efficiently using

the Gottesman—Knill theorem [17].
As the parity measurement is equivalent to local mea-

surement followed by simple data postprocessing, and the
initial states required are product states locally equivalent
to the all-zeros state, it is important that precise local
operation be available. In other words, the problem of
implementing the inverse of a multibody Clifford unitary
U can be translated into the problem of implementing
classical data processing and local (single body) quantum
operations reliably. These operations are often readily
available at high fidelities, as randomizing benchmarking
results have demonstrated [11,18,19]. Thus, the average
fidelity of any implementation of a Clifford group opera-
tion can be estimated using a number of experiments that
depend only on the desired accuracy, as is the case for
twirling experiments with quantum memories [8].
Because of this connection to twirling protocols, our

proposal also enables the estimation of other parameters
beyond the gate fidelity, such as the probability of errors of
a given weight. Recent proposals for Monte Carlo estima-
tion of state and gate fidelity have the same scaling as the
protocol we describe here (in the case of Clifford gates)
[20,21]. However, the probabilities of errors of a given
weight are not natural parameters to be considered in the
Monte Carlo sampling proposals, demonstrating the ad-
vantage of considering twirling protocols in this context.
The simplicity of the experiments also shows that our
proposal is of practical significance in the benchmarking
of these important operations. Moreover, because the esti-
mation of the average fidelity in the twirling protocol
corresponds to the estimation of the probability of no errors
having occurred (a single parameter that is accessible with
an accuracy that does not depend on the number of qubits
[8]), Bayesian estimation of such a probability is straight-
forward, as is the calculation of uncertainties associated
with these estimates.

FIG. 1. The relationship between (a) comparing a physical
process E to the identity, and (c) comparing a physical process
superoperator ~U ¼ U � E to a unitary superoperator U can be
seen by (b) the appropriate insertion of the identity Uy �U.
WhenU and all Ci are elements of the Clifford group, and M̂j is

a Pauli operator, fðM̂j; Ci;UÞ is also a Pauli operator.
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Experiment.—A common task for an experimentalist
is to optimize and tweak the performance of a particular
gate on the system. The experimenter has many potential
knobs to adjust and he or she needs a reliable robust
method for certifying whether any changes actually im-
proved the performance. A trivial example is calibrating
the power of a pulse but here we demonstrate how we can
easily quantify the improvement from more subtle and
sophisticated control improvements.

Methods inspired by optimal control theory have been
successful in aiding pulse design for small systems.
However, for these pulses to achieve the designed fidelity,
it is important that the implemented control fields at the
sample match the designed ones. That is to say, any system-
atic deviations from the designed pulses, in pulse generation
or amplification, need to be accounted for or rectified. To
this end, a feedback system can be employed to correct for
these systematic imperfections [22]. We use an antenna to
measure the fields in the vicinity of the sample, then this data
is fed back for comparison with the target pulse, and a new
pulse form that attempts to compensate for the imperfec-
tions is computed and sent back to the signal generation unit.
This loop is repeated a number of times to reach a satisfac-
tory pulse form [23,24]. Figure 2 shows a typical example
of the measured pulse forms of the initial and corrected
attempts to match a target pulse shape. The development of
this feedback pulse rectification protocol has led to a great
improvement in the fidelity of coherent control of nuclear
spins in the solid state—the certification scheme is used
herein to demonstrate and quantify the typical improvement
in fidelity resulting from using the feedback system.

The computational register used in this demonstration is
an ensemble of molecular nuclear spins in a macroscopic
single crystal of malonic acid (C3H4O4). A small fraction
(� 3%) of the molecules are triply labeled with (spin- 12 )

13C to form an ensemble of 3-qubit processor molecules,
spatially buffered from one another by molecules of the
same compound but with naturally abundance (� 1%)
carbon nuclei [25–27]. The carbon control pulses are
numerically optimized to implement the required unitary
gates using the gradient ascent pulse engineering [28]
algorithm, and are typically designed [29] to have an
average Hilbert—Schmidt fidelity of 99.8% over appropri-
ate distributions of Zeeman-shift dispersion and control-
fields inhomogeneity.
Preparation and measurement.—The certification pro-

tocol calls for the preparation of a number of input states
each with a known nonzero projection on some arbitrarily

chosen 3-qubit Pauli operator, M̂k. To each of these prepa-
rations, the experimental implementation to be certified is
applied, followed by a measurement of the corresponding

Pauli operator, ÛM̂kÛ
y, where Û is the target Clifford

operation. These measurements are averaged for M̂k with
the same Pauli weight, and linearly transformed [8,27] to
find the average fidelity of the experimental implementa-
tion. That is to say, the certification protocol follows the
twirling protocol for quantum memories [8], with the one
exception that the required measurements are transformed

by the target operation Û.
In the current implementation, the first step in the initial

preparation procedure is a selective polarization transfer
from one of the methylene protons (Hm1

) to the methylene

carbon (Cm). This is realized using a short [30] Hartman—
Hahn cross-polarization sequence [31] after tipping the
proton polarization to the transverse plane, and is sufficient
because the coupling strength between these two nuclei is
more than an order of magnitude larger than any other
coupling. The state of the three carbon nuclei after this

polarization can be described as �i ¼ Î�3 þ � ^IIX, where
� quantifies the amount of polarization transferred from
the proton, and is on the order of �10�5 for protons in
7.1 T at room temperature. A free induction decay is
collected for this initial state to establish a reference for
�, against which all subsequent experiments are compared.
Simple coherence-transfer pulses can then be used to pre-

pare all states of the form �w ¼ Î�3 þ �X̂�wÎ�3�w, and
their permutations over the 3 qubits, for all possible Pauli
weights, w ¼ 1, 2, 3. From these states, pulses realizing
single-qubit �2 rotations are all that is required for preparing

a state with nonzero projection on any arbitrary 3-qubit

Pauli operator, M̂k. The same set of pulses are sufficient to

map the required measurement, ÛM̂kÛ
y, unto an observ-

able in a nuclear magnetic resonance (NMR) experiment.
These single-qubit �2 rotations can be realized with very

high fidelity, which we now demonstrate using single-qubit
randomized benchmarking [12] on each of the qubits—the
average fidelity of randomized sequences of pulses that
compose to the identity is measured for varying sequence
lengths, and assuming that the implementation errors do
not depend on which gate is being applied, the average
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FIG. 2 (color online). Portion of a typical pulse shape showing
the designed target shape (solid blue line), the initial attempt at
implementing the pulse including systematic imperfections due
to nonlinearities in pulse generation and amplification as well as
finite bandwidth effects from the probe’s resonant circuit (red
dots), and the corrected shape after the feedback protocol (green
circles). Full power corresponds to nutation frequency of 80 kHz.
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fidelity decay is fit to [12]: F ¼ A0p
m þ B0, wherem is the

sequence length, A0 and B0 encompass initialization and
measurement errors, and p is a parameter related to the

average error per gate, r ¼ 1�p
2 . Assuming the gate errors

are unital, we set B0 ¼ 1
2 . In Fig. 3, the average fidelity

of 24 sequences each for up to 96 pulses per sequence is
plotted, and the average error per single-qubit �

2 pulse is

estimated to be less than 0.5%. Furthermore, to get an
estimate of the average combined fidelity of the state
preparation and measurement processes, we certify the
do nothing operation against the target identity evolution.
The results are summarized in Fig. 4(a).

Certifying the 3-qubit encoding.—Next, we choose to
certify the (1.5 ms) pulse [32] designed to perform the
encoding operation of the phase variant of the 3-qubit
quantum error correcting code against the ideal gate [33],
which is a 3-qubit Clifford gate that decomposes into two
controlled-NOTs (CNOTs) followed by transversal single-
qubit Hadamards. As shown in Fig. 4, the average fidelity
of the implemented pulse, before and after rectification—
including preparation and measurement errors—is esti-
mated to be 86.3% and 97.3%, respectively. Under an
assumption that the errors from preparation and measure-
ment are factorable, we estimate the average fidelity of the
rectified implementation to be 99%.
Discussion.—We have shown how it is possible to cer-

tify individual Clifford group operations efficiently using a
modified twirling protocol. As an illustrative example, we
demonstrated the certification of the encoding operation
for a 3-qubit error correction code, and the improvements
on the performance of this operation via feedback of
measurements of the control field at the NMR sample.
The high fidelity achieved in this demonstration marks
state-of-the-art coherent control of nuclear spins in the
solid state.
It is worth emphasizing that what we have shown here

is the efficiency of the certification algorithm, irrespective
of the method used to obtain the pulse form to be certified.
Indeed, the problem of designing control sequences to
perform a given task remains one of the formidable chal-
lenges in quantum control, at least as challenging as simu-
lating the full quantum dynamics. Precisely because it
avoids the inefficiency of the simulation, this certification
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FIG. 3 (color online). Randomized benchmarking of single-
qubit �2 rotations required for state preparation and measurement—

shown is the average fidelity decay of randomized sequences of
�
2 pulses on each of the 3 qubits. Each data point is the average

fidelity of 24 sequences. Fitting the data to [12] logðF� 1
2Þ ¼

logA0 þm logp,weextract anaverageerrorpergateof1:6� 0:4�
10�3 for C1 (blue diamonds), 3:8� 0:7� 10�3 for C2

(red squares), and 4:4� 0:6� 10�3 for C3 (Cm) (green circles).

FIG. 4 (color online). Summary of the experimental parameters and results for the three sets of certification experiments—the Target
column shows the quantum circuit representation of the ideal process; the Experiment column represents the experimental setup to
certify the corresponding implementation, including state preparation and measurement using local readout pulses as described in the
text; kw and �w are, respectively, the number of performed experiments, and the average surviving polarization, partitioned by the Pauli
weight, w, of the input preparation [8,27]. Shown also are the Bayesian estimated probability density functions for the probability of no
error in the experimental implementation of the target gate, as well as the estimated average fidelity. The three sets of experiments are
(a) state preparation and measurement compared to the identity operation—this can be thought of as a calibration for the certification
procedure; (b) the target is the encoding operation for the 3-qubit phase quantum error correcting code, and the experimental
implementation is a numerically designed pulse using gradient ascent pulse engineering; and (c) is the same as (b) but the pulse is
corrected for implementation errors using the feedback procedure described in the text.
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scheme may be extended to an efficient in situ pulse design
protocol, in which individual parameters can be optimized
iteratively without assumptions about experimental
imperfections.

We thank J. Emerson, A. Blais and J. Gambetta for
comments on the manuscript. This work was funded by
the Natural Sciences and Engineering Research Council
(NSERC) of Canada.

*omoussa@iqc.ca
†msilva@bbn.com
‡laflamme@iqc.ca

[1] J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 78,
390 (1997).

[2] I. L. Chuang and M.A. Nielsen, J. Mod. Opt. 44, 2455
(1997).

[3] M.D. Bowdrey, D.K. L. Oi, A. J. Short, K. Banaszek, and
J. A. Jones, Phys. Lett. A 294, 258 (2002).

[4] M.A. Nielsen, Phys. Lett. A 303, 249 (2002).
[5] R. Blume-Kohout, New J. Phys. 12, 043034 (2010).
[6] J. Emerson, R. Alicki, and K. Zyczkowski, J. Opt. B 7,

S347 (2005).
[7] C. Dankert, R. Cleve, J. Emerson, and E. Livine, Phys.

Rev. A 80, 012304 (2009).
[8] J. Emerson, M. Silva, O. Moussa, C. Ryan, M. Laforest, J.

Baugh, D.G. Cory, and R. Laflamme, Science 317, 1893
(2007).

[9] M. Silva, Ph.D. thesis, University of Waterloo, 2008.
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