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We present an approach to building interferometric telescopes using ideas of quantum information.

Current optical interferometers have limited baseline lengths, and thus limited resolution, because of noise

and loss of signal due to the transmission of photons between the telescopes. The technology of quantum

repeaters has the potential to eliminate this limit, allowing in principle interferometers with arbitrarily

long baselines.
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The two primary goals for a telescope are sensitivity and
angular resolution. Interferometry among telescope arrays
has become a standard technique in astronomy, allowing
greater resolving power than would be available to a single
telescope. In today’s IR and optical interferometric arrays
[1,2], photons arriving at different telescopesmust be physi-
cally brought together for the interference measurement,
limiting baselines to a few hundred meters at most because
of phase fluctuations and photon loss in the transmission.
Improved resolution would, if accompanied by adequate
sensitivity, have many scientific applications, such as de-
tailed observational studies of active galactic nuclei, more
sensitive parallax measurements to improve our knowledge
of stellar distances, or imaging of extra-solar planets.

The field of quantum information has extensively
studied the task of reliably sending quantum states over
imperfect communications channels. The technology of
quantum repeaters [3] can, in principle, allow the trans-
mission of quantum states over arbitrarily long distances
with minimal error. Here we show how to apply quantum
repeaters to the task of optical and infrared interferometry
to allow telescope arrays with much longer baselines than
existing facilities. The traditional intended application for
quantum repeaters is to increase the range of quantum key
distribution, but the application to interferometric tele-
scopes has more stringent demands in a number of ways.
Quantum repeaters are still under development, and our
work provides a new goal for research in that area. It sets a
new slate of requirements for the technology, but simulta-
neously broadens the appeal of successfully building quan-
tum repeater networks.

We begin by reviewing the standard approach to
optical and infrared interferometry, known as ‘‘direct de-
tection’’, [1,2] but we will treat the arriving light quantum-
mechanically. The light is essentially in a weak coherent

state, but the average photon number per mode is much less
than 1, so two-photon events are negligible. Therefore, we
assume the incoming wave consists of a single photon. We
consider first an idealized set up with two telescopes and
no noise, as in Fig. 1.
Depending on the orientation of the ‘‘baseline’’ (the

relative position of the telescopes in the interferometer),
the light has a relative phase shift � between the two
telescopes L and R, resulting in the state

j0iLj1iR þ ei�j1iLj0iR; (1)

with j0i and j1i indicating 0 and 1-photon states. If we
measure � with high precision, that tells us the source’s
location very precisely.� is proportional to the baseline, so

FIG. 1 (color online). Basic setup of a direct-detection inter-
ferometer. In the arrangement pictured, light travels an addi-
tional distance b sin� to reach telescope L rather than telescope
R. For light with wavelength �, the extra distance imposes a
phase shift� ¼ ðb sin�Þ=� at telescope L relative to telescope R.
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longer baselines produce a more accurate measurement of
the source’s position.

Often we are interested in sources that have structure on
the scale we can resolve with the interferometer. Different
locations on an astrophysical source usually emit light
incoherently, so the light is in a mixed state, formed by a
mixture of photons from different locations on the source.
Because different locations give different phase shifts �,
the off-diagonal components of the density matrix de-
crease. We get a density matrix of the form

� ¼ 1

2

0 0 0 0

0 1 V � 0

0 V 1 0

0 0 0 0

0
BBBBB@

1
CCCCCA

(2)

in the basis j0iLj0iR, j0iLj1iR, j1iLj0iR, j1iLj1iR. V is

known as the ‘‘visibility.’’ V ð ~bÞ is a function of the base-
line vector between the telescopes.

The light from the two telescopes is then brought
together. The light from telescope R is subjected to an
additional delay relative to the light from L so that when
the photons are combined in the interferometer, the path
travelled by an L photon differs from the path of an R
photon by less than the coherence length of the incoming
light. The delay line is adjustable, producing a known
phase � for the light from telescope R. In Fig. 1, the light
then enters a beam splitter. We see the photon in output
port 1 with probability ½1þ ReðV e�i�Þ�=2, and in output
port 2 with probability ½1� ReðV e�i�Þ�=2. By sweeping
through different values of �, we can measure both the
amplitude and the phase of V .

A single pair of telescopes with a fixed baseline does not
produce enough information to reconstruct the original
source brightness distribution, but an array of telescopes
with many different baselines acquires much more infor-
mation. The van Cittert–Zernike theorem [4] states that the
visibility (as a function of baseline) is the Fourier trans-
form of the source distribution. Thus, if we could measure
the visibility for all baselines, we could completely image
the source. With only a limited number of baselines, the
discrete Fourier transform may nonetheless give a good
approximation of the source brightness distribution.

There are two major difficulties involved in implement-
ing the setup described in Fig. 1. First, if the telescopes are
ground based, density fluctuations in the atmosphere
modify the relative phase shift between the telescopes.
The phase noise is large enough to completely swamp
the signal. Our proposal suffers from this problem just as
do direct-detection interferometers, and the same solutions
to it apply. For instance, one can use space-based tele-
scopes, perform phase referencing to recover the original
phase information, or, in an array of many telescopes,
calculate closure phases, which combine the interference
results from different pairs of telescopes to cancel out

telescope-specific phase shifts due to atmospheric fluctua-
tions or other causes [1].
The second problem is that it is difficult to transport single

photons over long distances without incurring loss of pho-
tons and additional uncontrolled phase shifts. For instance,
slight variations in path length due to vibrations or small
misalignments of the optical elements both produce reduced
interference fringes. The signal we wish to measure is the
amount of interference—for instance, a point source should
have complete constructive and destructive interference,
while a uniformly bright field of view should have no
interference at all. Since many different error mechanisms
also cause a reduction in the interference visibility, this is a
serious problem. Loss of photons can present a severe
limitation on the array’s sensitivity to faint sources. In
practice, these problems limit the baseline size of interfer-
ometers using direct detection. Today’s best optical and
infrared interferometers use baselines of only a few hundred
meters at most. This is the problem we wish to address.
The task of transporting quantum states reliably has been

intensively studied in the field of quantum information. For
the specific task of interferometry, we suggest using a
‘‘quantum repeater’’ [3,5]: Instead of sending a valuable
quantum state directly over a noisy quantum communica-
tions channel, instead create a maximally entangled state
[6] such as j01i þ j10i, and distribute that over the channel.
The entangled state is known and replaceable, so we can
check to see that it has arrived correctly. If it has, then we
transmit the original quantum state using a technique
known as ‘‘quantum teleportation’’ [7].
For an interferometric telescope, it is not necessary to

perform the teleportation explicitly; we can use the en-
tangled pair directly to measure the visibility, as in Fig. 2.
We now have two separate interference measurements, one
at each telescope. We postselect on the measurement re-
sults, considering only the case where we see one photon at
telescope L and one photon at telescope R. One of these
photons has come from the astronomical source, and one
has come from the entangled pair, but we have no way of
knowing which is which. We refer to them as the ‘‘astro-
nomical’’ photon and the ‘‘lab’’ photon, respectively. On

FIG. 2 (color online). Performing an interference measure-
ment between two telescopes using an entangled state emitted
from a central entangled photon source (EPS).
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each side, there are two detectors, and the probability of
seeing a photon at the two detectors is equal. The signal we
wish to measure is contained not in the number of photons
seen at any given detector, but in the correlation between
which L detector clicks and which R detector clicks.

Again, we assume the state of the astronomical photon is
given by Eq. (2). The variable delay line is now applied to
the entangled state when the photon is sent to L, producing
the entangled state j0iLj1iR þ ei�j1iLj0iR. Note that the
interference measurement at detector L occurs slightly
later than the interference measurement at R. When we
postselect, we insist that the observed photons be displaced
by precisely this time delay, with an uncertainty given by
the coherence length of the photons.

Half the time, both photons arrive on the same side. We
discard those cases. We lump together pairs of outcomes
where there is one photon on each side. The total probability
of seeing a correlation (L1, R1 or L2, R2), conditioned on
having one click at each telescope, is ½1þ ReðV e�i�Þ�=2,
and the total probability of seeing an anticorrelation (L1,R2
or L2, R1) is ½1� ReðV e�i�Þ�=2. The measurement of
correlation vs anticorrelation thus provides the same infor-
mation as the two outputs of the beam splitter in a direct-
detection experiment.

Figure 2 can be interpreted as a postselected teleporta-
tion at R followed by an interference experiment at L. The
beam splitter and photo-detectors at R implement a mea-
surement with projectors j0iAj1iE � j1iAj0iE, where the
subscript A denotes an astronomical photon mode and E
denotes a mode of the entangled photon. When 0 or 2
photons arrive at R, the teleportation fails and we discard
the state, but when 1 photon is detected at R, we succeed in
teleporting the arriving A state to L, where it is interfered
with the A mode arriving at L. Of course, the diagram is
completely symmetric, so we can equally well consider it
as teleporting the state from L to R.

In principle, the sensitivity of an entangled-state
interferometric telescope can be similar to that of a
direct-detection interferometer, but there are a number of
significant technological barriers to achieving the same
level of sensitivity, even without a quantum repeater. We
need a high-rate true single-photon source [8,9] which puts
out exactly one photon per field mode to produce the
entangled states, and very fast detectors to allow a large
bandwidth. Furthermore, 50% of the light will be lost in the
scheme of Fig. 2, corresponding to cases where the astro-
nomical photon and entangled photon arrive at the same
telescope. The loss can be reduced to 1=n for an array of n
telescopes by using a ‘‘W’’ state as the entangled state,
consisting of a single photon split coherently between the n
telescopes. These and other issues relating to implementa-
tion of the scheme are discussed in more detail in the
supplemental material [10].

Our scheme’s advantage is that it allows extending the
baseline of interferometers well beyond what is currently

possible. There is a substantial body of research investigat-
ing how to create entangled states shared by faraway sites
[3], and our scheme allows us to apply those techniques to
the problem of creating long-baseline interferometers.
A quantum repeater can help us establish an entangled

state at the two telescope locations by reducing two com-
mon types of noise. The first challenge is phase noise, often
due to path length variation in the interferometer. Active
stabilization of path lengths can substantially reduce phase
noise [11]. Another solution to phase noise is entanglement
distillation [12], a protocol which takes a number of noisy
entangled states as input and outputs a smaller number of
less-noisy entangled states. Active stabilization can be
applied equally to direct-detection or entangled-state inter-
ferometry, but entanglement distillation is only available
for entangled-state interferometry. The second challenge is
loss of photons, under which only a fraction of the en-
tangled states that are sent are received. One well-known
scheme to reduce loss is due to Duan et al. [13]. In that
scheme, two atomic clouds are entangled in a ‘‘heralded’’
way, meaning we have a measurement that tells us when
the entanglement has succeeded despite the loss during
transmission. We continually attempt to generate entangle-
ment between the atomic clouds, and once we succeed, we
can store it until it is needed. We discuss repeater protocols
further in the supplemental material [10].
Building on the basic quantum repeater protocols, one

could build a network of quantum repeaters to create
entangled states shared between arbitrarily distant points
[5]. Repeater stations are positioned at a modest distance
from each other, so that transmission errors and loss be-
tween neighboring stations are correctable via the repeater
protocols described above. We can create entangled pairs
shared between neighboring repeaters, then join together
multiple entangled states as in Fig. 3, using entanglement
swapping [14] to create an entangled state between any
pair of nodes in the network.

(a) (b)
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FIG. 3 (color online). Creating shared entanglement. (a) shows
the simplest scenario: pass one single photon through a beam
splitter and send the resulting entangled modes to the receivers.
(b) In a quantum repeater, a series of quantum relays entangles
several entangled photon pairs via a Bell-state measurement
(BSM), and uses entanglement distillation (ED) to extract
high-quality entanglement between distant receivers.
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Our protocol is a very demanding application of quan-
tum repeater networks. In order to get a sense for the
required photon rates and the sensitivity, we define a figure
of merit s ¼ rp��. r is the rate of entangled states output
by the repeater network, measured in entangled states per
spatiotemporal mode (0 � r � 1). �� is the optical band-
width for the system, which requires the repeaters to
produce entangled states of bandwidth ��, and constrains
the speed of the detectors, which must distinguish between
photons arriving at that bandwidth. p is the optical trans-
mission and detection efficiency in the components of the
system, not counting the 50% inherent transmission due to
postselection. The rate of detected signal events (involving
one astronomical photon and one lab photon) is equal to
s=2 times the rate of astronomical photons per unit band-
width hitting the telescopes, which is derived from the
wavelength �, the aperture size, and the magnitude of the
star being observed.

We need to have more signal photons than dark counts,
and enough photons arriving in an atmospheric fluctua-
tion time (around 10 ms [1]) to measure the visibility.
Assuming 1 m receiver apertures, r ¼ p ¼ 0:5 and
�� ¼ 0:1 nm at �¼800 nm (corresponding to 1:5�1011

entangled photons per polarization per second), we have
s ¼ 0:025 nm. Then the system is sensitive to stars with
apparent magnitude around 7.5. This is comparable to the
sensitivity of today’s CHARA interferometer array [15],
which also uses 1 m telescopes. Today’s repeater protocols
are nowhere near capable of working at this bandwidth, nor
can they achieve this rate of entangled-state production.
Achieving this sensitivity with 30 km-long baselines (a
hundredfold improvement over CHARA) would produce
a very useful astronomical observatory. Even a somewhat
lower sensitivity with baselines of this size would in some
respects be an improvement over existing instruments,
with better angular resolution but lower sensitivity.

We also want the quantum repeater output to have a high
fidelity to the correct entangled state. In particular, if the
quantum repeater occasionally produces two entangled
states in the same mode, this leads to spurious detection
events where the photons at L and R are both entangled
photons. The effect is much the same as having dark
counts, so the rate of double entangled-state production
should be comparable to the rate of dark counts (say about
100 per second).

Let us compare our scheme to other interferometric
techniques. Both intensity interferometry [16] and hetero-
dyne interferometry [17,18] can achieve much longer base-
lines than direct-detection interferometry, and they are
technically much easier than entangled-state interferome-
try. However, neither is sensitive enough to be generally
applicable for interferometry in optical wavelengths
except for the brightest sources, whereas entangled-state
interferometry could be, if the technical hurdles we have
discussed can be overcome. Both schemes are related to

entangled-state interferometry, and we discuss the connec-
tions in the supplemental material [10].
In this Letter, we have primarily considered how distrib-

uted quantum entanglement can improve optical interfer-
ometry. For radio frequencies, interferometry can be
performed robustly today even between telescopes spread
across the planet. At optical frequencies, many fewer
photons arrive per mode, making interferometry much
more difficult. In telescope design, the arriving light is
usually treated classically, but when the number of photons
arriving is small, the quantum state of the light may be-
come important. Thus, the field of quantum information is
well-suited to provide advances.
Quantum repeaters have until now been under develop-

ment primarily for use in quantum communications, so
interferometry offers an interesting new venue for the
application of quantum information techniques. As we
have shown, quantum repeaters can completely lift the
upper limit on distance over which it is possible to do
interferometry, but a number of technical hurdles need to
be overcome first. In particular, we need quantum repeater
protocols capable of producing an extremely high rate of
broadband entangled photons, as well as high efficiency
photodetectors with fast time resolution. One additional
requirement we have is that we would like to perform
astronomy at a variety of optical frequencies; either the
repeater protocols need to work at those frequencies or we
need a way to shift the frequencies [19] of either the
arriving light or the entangled photons.
Quantum information technology may offer even further

significant applications to help improve astronomical ob-
servation, even beyond direct quantum detection tech-
niques [20]. For instance, it may be advantageous to
coherently store arriving photons using a quantummemory
and then perform the quantum Fourier transform, rather
than measuring and performing the classical Fourier trans-
form. The quantum Fourier transform works reasonably
well even with a small number of photons, whereas if we
measure first, we need enough photons to get a reliable
measurement of each phase.
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