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The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum

theory and numerous quantum information protocols. Two distant parties can increase the amount of

entanglement between them by means of quantum communication encoded in a carrier that is sent from

one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not

entangled with the parties. However, in light of the defining property of entanglement stating that it cannot

increase under classical communication, the carrier must be quantum. Here we show that, in general,

the increase of relative entropy of entanglement between two remote parties is bounded by the amount of

nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord.

We study implications of this bound, provide new examples of entanglement distribution via unentangled

states, and put further limits on this phenomenon.
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Introduction.—Entanglement is a trademark of quantum
physics and a powerful resource enabling faster-than-
classical computation, efficient quantum communication,
and secure cryptography [1]. For these reasons, the design
of efficient methods to distribute entanglement is one of
the key goals of mainstream quantum information science.
Of particular relevance for tasks of long-haul quantum
communication is the distribution of entanglement among
the remote noninteracting nodes of a quantum network [2].
In this case, two general architectures able to accomplish
this task have been identified: the first relies on the avail-
ability of a resource whose entanglement is transferred to
chosen nodes of the network [3]; the second is a quantum
communication scenario based on the exchange of a
carrier quantum system between two of such distant nodes
[4], which might be referred to as the sender and receiver
laboratory, respectively.

Remarkably, Cubitt et al. [5] reported a scheme where
the carrier exchanged by sender and receiver remains
unentangled from them at all times. This result, which
was later extended to the continuous-variable scenario in
[6], intriguingly implies that the amount of distributed
entanglement is not bounded by the entanglement initially
shared by the carrier and the sender, given that in these
cases they are unentangled at all times. These observations
pave the way to some interesting considerations. First,
quite clearly, the carrier must display some quantum
features, otherwise the protocol would simply consist of
the exchange of classical communication aided by local

node-carrier operations, which cannot increase entangle-
ment [7]. Second, in Refs. [8] a link has been suggested
between the distribution of entanglement by separable
states and the presence of more general forms of quantum
correlations, as captured for example by quantum discord
[9,10], between nodes of the network and the carrier.
In light of such considerations, here we address the

following fundamental questions: How much can the
entanglement between sender and receiver laboratories
increase under the exchange of a carrier? Is there a quanti-
tative relation between such increase and the nonclassical
correlations between the carrier and the parties?
Our key finding is a general bound on the entanglement

gain between distant laboratories under local operations and
quantum communication, which is given by the quantum
discord between them and the carrier. In turn, this result
provides an operational interpretation of quantum discord
as the truly necessary prerequisite for the success of entan-
glement distribution as opposed to entanglement itself.
We show that the relation thus formulated generalizes the
subadditivity of entropy and can be quite naturally linked
to the possibility that quantum conditional entropy attains
negative values [11]. Finally, we study in detail the resour-
ces required for entanglement creation and increase via the
use of a separable carrier, and illustrate our findings with
some new concrete examples of such a phenomenon.
Definitions.—In order to treat entanglement and discord

on the same footing, throughout this Letter we consider
the former as measured by the relative entropy of
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entanglement [12] and the latter as quantified by the one-
way quantum deficit [13], also known as relative entropy
of discord [14]. The quantum relative entropy between
two states � and � is defined as Sð� k �Þ: ¼ �Sð�Þ �
trð� log�Þ, where Sð�Þ ¼ �trð� log�Þ is the von Neumann
entropy of �. The relative entropy is monotonic under
any completely positive trace-preserving map M, that is
Sð� k �Þ � S½Mð�Þ k Mð�Þ�. The relative entropy of
entanglement in the bipartition X versus Y is defined as
the minimum relative entropy EX:Yð�Þ: ¼ min�X:Y

Sð� k
�X:YÞ between the joint state � of X and Y and the set of
separable states �X:Y ¼ P

ipi�
i
X � �i

Y [12]. Similarly, the
relative entropy of discord is defined as the minimum
relative entropy DXjYð�Þ :¼ min�XjYSð�jj�XjYÞ between

� and the set of quantum-classical states �XjY ¼P
jpj�

j
X � jjihjjY , with fjjig an orthonormal basis for Y.

It can be shown that DXjYð�Þ corresponds to the minimal

entropic increase resulting from the performance of a
complete projective measurement �Y over Y: DXjYð�Þ ¼
min�Y

S½�Yð�Þ� � Sð�Þ where �Yð�Þ describes the state

after the measurement �Y [14]. Finally, mutual informa-
tion between X and Y is defined as IX:Yð�Þ :¼ Sð�XY k
�X � �YÞ, with �X and �Y the reduced states of X and Y.
Mutual information quantifies the total amount of correla-
tions present between X and Y [15]. It holds IX:Yð�Þ �
DXjYð�Þ � EX:Yð�Þ.

Entanglement distribution.—Consider two remote
agents, Alice and Bob, having access to local quantum
systems A and B, respectively. Their aim is to increase
the entanglement that they share by sending an auxiliary
quantum system—the carrier C—with which they interact
locally (see Fig. 1). The key step of any communication
scheme is the transfer of a carrier from one laboratory to
the other. The difference in entanglement across the bipar-
titions A:CB and AC:B, corresponding to the situation after
and before the transfer of the carrier, can be bound thanks
to the following (see the Appendix).

Theorem 1.—For any tripartite state � ¼ �ABC it holds

jEA:CBð�Þ � EAC:Bð�Þj � DABjCð�Þ: (1)

We apply this relation to the scenario of Fig. 1. Let us call
� the initial state of A, B, and C, and � ¼ MACð�Þ the
state obtained from it by means of a local encoding opera-
tion MAC. A local operation on AC cannot increase
entanglement in the AC:B cut, i.e., EAC:Bð�Þ � EAC:Bð�Þ.
System C is then sent to Bob’s site, where it interacts
with B via a decoding operation meant to localize on
B the entanglement between the laboratories [16].
Combining the above description with Eq. (1) for � we get

E A:CBð�Þ � EAC:Bð�Þ þDABjCð�Þ: (2)

This shows that the entanglement gain between distant
laboratories is bounded by the amount of quantum discord
as measured on the communicated system. In what follows

we discuss the meaning and the implications of the bounds
given in Eqs. (1) and (2).
Impossibility of entanglement distribution by local

operations and classical communication.—Let us first
address the case of DABjCð�Þ ¼ 0. This corresponds to

classical communication from Alice to Bob as it implies
that � has the quantum-classical structure � ¼ P

ipi�
i
AB �

jiihijC. The index i embodies classical information that
Alice may copy locally before sending C to Bob. After C
is transferred from Alice to Bob, both have access to this
information. Bob can then perform a local transformation
that depends on the index i originally held only by Alice.
The process just described is one communication step of a
general protocol based on the use of local operations and
classical communication (LOCC). The protocol may in-
clude several rounds of classical communication with C
that is sent back and forth between Alice and Bob; local
classical registers can be kept or erased at any stage of the
protocol. In this case, Eq. (2) reduces to the statement that
entanglement does not increase at any step of a protocol
based on LOCC [7]. If DABjCð�Þ does not vanish, the

transfer of C cannot be interpreted as classical communi-
cation, revealing the role of discord in general quantum
communication. Hence, Eq. (2) constitutes a nontrivial
relaxation of the condition of monotonicity of entangle-
ment under LOCC, bounding the increase of entanglement
under local operations and quantum communication.
Pure state case.—We now apply Eqs. (1) and (2) to a

tripartite pure state � ¼ j�ih�jABC. For any bipartite pure
state, the relative entropy of entanglement and the relative
entropy of discord coincide with the entropy of the reduced
states of the parts. Thus, Eq. (1) becomes

jSð�AÞ � Sð�BÞj � Sð�ABÞ; (3)

which is the Araki-Lieb inequality [17] and is equivalent to
the subadditivity of entropy for subsystems AC and BC.
Accordingly, Eq. (1) can be seen as a generalization of the
subadditivity of entropy valid for tripartite mixed states.
When the carrier is sent from Alice’s lab to Bob’s, the

change in entanglement given in Eq. (2), becomes

(a) (b)

(c) (d) (e)

FIG. 1 (color online). Entanglement distribution. (a) The dis-
tribution protocol begins with systems A and C in Alice’s lab and
system B in Bob’s. (b) In the next step, Alice applies an encoding
operation to systems A and C. (c) System C is then sent to Bob’s
site. (d) The carrier C interacts with B via a decoding operation
meant to localize on B the entanglement between A and BC.
(e) Systems A and B are more entangled than in panel (a).
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E A:CBð�Þ � EAC:Bð�Þ ¼ SCjBð�Þ ¼ �SCjAð�Þ; (4)

where SCjAð�Þ :¼ Sð�ACÞ � Sð�AÞ is the conditional en-

tropy of �AC. This gives an operational interpretation of
the negative conditional entropy as the increase of entan-
glement between distant laboratories caused by the transfer
of C [11].

Entanglement distribution via a separable system.—The
bound in Eq. (1) is tight in some cases; in particular, we
have verified that this happens for the three-qubit state of
the example of entanglement creation with an unentangled
carrier introduced in Ref. [5]. Motivated by this, and in
order to emphasize the significance of the appearance of
discord rather than entanglement on the right-hand side of
Eq. (1), we focus on the general conditions for the success
of entanglement creation by means of a separable carrier.
This corresponds to requiring

EB:ACð�Þ ¼ 0 ½) EB:ACð�Þ ¼ 0�; (5a)

EC:ABð�Þ ¼ 0; (5b)

EA:BCð�Þ> 0: (5c)

Equation (5a) says that no initial entanglement between the
distant sites is present. The implication is due to the local
nature of the encoding operation MAC. Equation (5b)
encompasses our prescription that the carrier must be
separable from A and B. Finally, Eq. (5c) ensures that
nonvanishing entanglement is established by exchanging
the carrier. Nonvanishing A:BC entanglement does not
necessarily imply the possibility of creating A:B entangle-
ment via the local decoding operation on BC. Indeed, if
this was always possible, bound entanglement [18] would
not exist, as one could always map entanglement into
two-qubit entanglement, which is known to be distillable
[19]. However, in many relevant cases, including all our
examples, entanglement can be localized as shown by
Theorem 2 in the Supplemental Material [20].

In order to satisfy the conditions (5), besides the discord
present in �, there must be discord on the receiver side
already in the initial state �. This is seen by applying
Eq. (1) again, but with the roles of B and C interchanged,
and using the fact that discord does not increase under
operations on the unmeasured systems [21], arriving to

E A:CBð�Þ � EAB:Cð�Þ þDACjBð�Þ: (6)

If Eq. (5b) holds, we obtain the relation EA:BCð�Þ �
DACjBð�Þ. Note that if C is initially not correlated with

AB, the latter further simplifies to EA:BCð�Þ � DAjBð�Þ.
Another interesting limiting case of Eq. (6) is when
DACjBð�Þ ¼ 0. Then B is classical initially and therefore

also in the state � after the encoding: � ¼ P
ipi�

i
AC �

jiihijB. In this case entanglement between Alice and Bob
can only be created if the carrier is entangled with the sites
and, in particular, only if at least one �i

AC is entangled.

Indeed, such � simply describes a situation in which Bob,

upon reading the index i encoded in B, knows which of
many states �i

AC he will end up sharing with Alice.

On the other hand, entanglement creation with a
separable carrier is possible starting from a state with
DBCjAð�Þ ¼ 0. For instance, it is enough to consider the

three-qubit example given in Ref. [5], but starting with A
and C interchanged and using a step in the encoding
operation MAC to undo the change before proceeding
with the original protocol. However, under further restric-
tions, the classicality of A may prevent entanglement
creation with a separable carrier, as shown for instance in
Theorem 3 in the Supplemental Material [20].
Furthermore, we note that when the encoding operation is

restricted to be unitary, the presence of discord (on either
party) is not a sufficient precondition to make entanglement
creation with a separable carrier possible. This follows by
combining the fact that any bipartite state that is sufficiently
mixed is separable [22] and the existence of discordant states
infinitesimally close to any nondiscordant one [23]. As uni-
tary operations do not change mixedness, discord of suffi-
ciently mixed states cannot be converted into entanglement.
Finally, for a fixed dimension of the carrier, it is more

efficient to use an entangled carrier rather than a separable
one.On one hand, by sending ad-dimensional system that is
maximally entangled with a similar one that remains with
the sender, we can increase the shared entanglement by
log2d. On the other hand, Theorem 4 of the Supplemental
Material [20] shows that using separable states, the entan-
glement increase is strictly smaller than log2d.
Examples.—In order to make our result more concrete,

in the Supplemental Material [20] we provide new ex-
amples of both the creation and the increase of entangle-
ment between distant parties by the exchange of an
unentangled carrier. The examples are based on the fact
that the state of a bipartite system of total dimensions dtot
having the form �p ¼ pjc ihc j þ ð1� pÞ1=dtot is sepa-

rable if and only if p � pcr ¼ ð1þ a1a2dtotÞ�1, where a1
and a2 are the two largest Schmidt coefficients of the
bipartite state jc i, and 1=dtot is the maximally mixed state
of the total system [24]. Consider now a tripartite pure state
jc i ¼ jc iABC. This state admits three Schmidt decompo-
sitions corresponding to the three bipartitions A:BC, B:AC,
and C:AB. One can choose jc i such that pcr is the lowest
across the A:BC bipartition, so that there is a finite range
for p such that �p is A:BC entangled but separable in the

remaining two splittings. Such a �p is meant to play the

role of � in our scenario. We remark that the three-qubit
example of Ref. [5] uses a carrier system C that is initially
classically correlated with A and B. However, a scenario
where C initially shares no correlation with the remote
nodes is more relevant from a practical point of view, as
one can imagine that the carrier is an independent system
to be used to distribute entanglement. Even with such a
restriction, entanglement can be established via a separa-
ble system, as proven explicitly by our examples in the
Supplemental Material [20].
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Conclusions.—It is the very act of physical transmission
of a carrier system that changes the amount of correlations
between the remote laboratories. To illustrate this consider
total correlations, as captured by mutual information. One
expects from the principle of no-signaling that the increase
of mutual information is bounded by the amount of com-
municated correlations. Indeed, applying the chain rule
for mutual information and its monotonicity under local
operations [25] one finds

I A:CB � IAC:B � IA:C � IAB:C: (7)

Both in classical and quantum information theory, the
increase of total correlations between the labs is bounded
by the correlations between the systems that are kept stored
in the labs and the carrier.

However, whereas there is only one kind of correlation
between classical random variables, quantum systems can
share different kinds of correlations [10]. In this Letter we
proved a relation analogous to Eq. (7) for the increase
of quantum entanglement between remote elements of
a quantum network. We showed that such increase is
bounded from above by the amount of nonclassical corre-
lations between the exchanged carrier and the distant nodes
as measured by quantum discord, a quantifier for a more
general type of nonclassical correlations than entangle-
ment. It follows that, in contrast withwhat onewould expect
extrapolating from Eq. (7), our bound for the entanglement
increase is in general larger than the entanglement between
the carrier and the nodes; in particular, it can be nonzero
evenwhen the latter vanishes. Indeed, this has to be the case,
as implied by the seminal example of entanglement distri-
bution using a separable carrier of Ref. [5].

Besides providing a natural operational interpretation
of quantum discord as the necessary prerequisite for the
success of entanglement distribution, our work identifies
the conditions for its occurrence with a separable carrier.
The scenario tackled by our study fits well with a few
experimental settings, including cavity or circuit-QED

and trapped-ion technology and we thus hope that our
results will find a prompt experimental demonstration.
M. Paternostro thanks the Centre for Quantum
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gether with J.M., the Institute for Quantum Computing,
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early stages of this work. We acknowledge financial sup-
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of Education in Singapore (T. K. C., K.M., and T. P.), the
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Note added.—During the completion of this Letter we

became aware of the closely related independent work by
Streltsov, Kampermann, and Bruß [29].

APPENDIX

We prove here Theorem 1 of the main text. It is a
consequence of the following Lemma.
Lemma 1.—Given � ¼ �ABC, consider �

�
C, the optimal

projective measurement on C for the sake ofDABjCð�Þ. Let
pi be the probability of outcome i for such a measurement,
and �i

AB be the corresponding conditional states of AB; i.e.,
��

Cð�ABCÞ ¼ P
ipi�

i
AB � jiihijC. Then

E A:CBð�Þ � DABjCð�Þ þ
X
i

piEA:Bð�i
ABÞ

¼ DABjCð�Þ þ EA:CB½��
Cð�Þ�

¼ DABjCð�Þ þ EAC:B½��
Cð�Þ�: (A1)

Proof.—Let �i�
A:B be the optimal separable state for the

sake of EA:Bð�i
ABÞ. The state

P
ipi�

i�
A:B � jiihijC is fully

separable and a fortiori A:CB-separable; moreover it is
invariant under the action of ��

C. Then the inequality (A1)

is obtained as follows:

EA:CBð�Þ � S

�
� k X

i

pi�
i�
A:B � jiihijC

�
¼ �Sð�Þ � Tr

�
� log

�X
i

pi�
i�
A:B � jiihijC

��
(A2a)

¼ �Sð�Þ � Tr

�
��

Cð�Þ log
�X

i

pi�
i�
A:B � jiihijC

��
(A2b)

¼ fS½��
Cð�Þ� � Sð�Þg þ

�
�S½��

Cð�Þ� � Tr

�
��

Cð�Þ log
�X

i

pi�
i�
A:B � jiihijC

���

¼ DABjCð�Þ þ S

�X
i

pi�
i
AB � jiihijC k X

i

pi�
i�
A:B � jiihijC

�
(A2c)

¼ DABjCð�Þ þ
X
i

piSð�i
AB k �i�

A:BÞ ¼ DABjCð�Þ þ
X
i

piEA:Bð�i
ABÞ; (A2d)

where the steps are justified as follows: for Eq. (A2a), the
fully separable state

P
ipi�

i�
A:B � jiihijC cannot be better

than optimal for the sake of EA:CBð�Þ; for Eq. (A2b),
Trð� log�ð�ÞÞ ¼ Trð�ð�Þ log�ð�ÞÞ for all (complete or
noncomplete) projective measurements �, and for all �

and all � [25]; for Eq. (A2c), by the optimality of ��
C for

the sake ofDABjCð�Þ; for the first equality of Eq. (A2d), by
the chain rule for relative entropy [26]; for the second
equality of Eq. (A2d), by the optimality of each �i�

A:B for
the sake of EA:Bð�i

ABÞ. Finally, the two last lines of
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Eq. (A1) are due to the fact that relative entropy of entan-
glement satisfies the ‘‘flags’’ condition of Ref. [27],
i.e., EFX:YðPipijiihijF � �i

XYÞ ¼
P

ipiEX:Yð�i
XYÞ ¼ EX:YF

ðPipi�
i
XY � jiihijFÞ. j

The statement of the above Lemma regards entangle-
ment redistribution. Nonetheless it is related to—and can
be seen as a generalization of—the results of Ref. [28],
where it was proven that the relative entropy of entangle-
ment is not lockable by dephasing any single qubit held by
one of the parties. In our context, it is further worth recall-
ing that the variation of a generic relative entropy-based
measure of correlations—not necessarily entanglement—
under the complete dephasing of one of the two parties was
considered in Ref. [13]. We notice that the total dephasing
of one of the two parties would simply destroy all entan-
glement. The bound given in Eq. (A1) is based on the
consideration of a hypothetical optimal complete von
Neumann measurement performed only on the subsystem
that is to be transferred from one party to the other.

Proof of Theorem 1.—Applications of Lemma 1 and the
monotonicity of the relative entropy of entanglement under
LOCC gives

E A:CBð�Þ � DABjCð�Þ þ EAC:B½��
Cð�Þ�

� DABjCð�Þ þ EAC:Bð�Þ: (A3)

By inverting the roles of A and B, we obtain Eq. (1). j
We remark that Lemma 1, although less amenable to a

clear operational interpretation, is in general strictly
stronger than Theorem 1. Consider for example the case
of a pure tripartite state symmetric under the exchange ofA,
B and C. For such a case, Eq. (3) is clearly not tight as soon
as SðAÞ ¼ SðBÞ ¼ SðCÞ ¼ SðABÞ ¼ SðACÞ ¼ SðBCÞ> 0,
since the left-hand side of Eq. (3) would vanish but its right-
hand side would not. On the other hand, in the same case,
provided that��

C [i.e., the measurement that is optimal for

the sake ofDABjCð�Þ] is such that all conditional states �i
AB

are separable, Eq. (A1) is tight. This happens, for example,
for the tripartite Greenberger-Horne-Zeilinger state � ¼
jGHZihGHZj, with jGHZi ¼ ðj000i þ j111iÞ= ffiffiffi

2
p

.
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