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The analysis of the size distribution of droplets condensing on a substrate (breath figures) is a test
ground for scaling theories. Here, we show that a faithful description of these distributions must explicitly
deal with the growth mechanisms of the droplets. This finding establishes a gateway connecting nucleation
and growth of the smallest droplets on surfaces to gross features of the evolution of the droplet size

distribution.
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Classical questions regarding breath figures involve the
influence of material defects and impurities on the droplet
patterns [1-5]. Presently, they are used as self-assembling
templates in microfabrication [4,6-10] and as highly
efficient means for heat exchange in cooling systems
[5,11-13]. They are also promising candidates for water
recovery in (semi-)arid regions [14,15]. For these applica-
tions, a detailed knowledge of the droplet size distribution
and the average droplet growth speed is vital. Here, we
demonstrate that the state of the art scaling theory [16-20]
fails to describe data from simulations [21] and laboratory
experiments [22], Fig. 1. A faithful description must, there-
fore, explicitly address the microscopic growth mecha-
nisms of droplets.

Classical scaling [16,17] asserts that on clean surfaces
the coagulation of droplets organizes the systems into a
state where the number of droplets, n(s, ¢), per unit droplet
volume and surface area takes a universal scaling form,

n(s, 1) =s° f(%) with § = S(7). (1a)

Here, s denotes the droplet volume, 6 is a scaling exponent,
f(x) is a dimensionless function, and S(7) is the volume of
the largest droplets encountered at time ¢, i.e., the average
volume of droplets in the bump of the distributions shown
in Fig. 1.

Since n(s, 1) has a dimension of length to the power
—5 the exponent # must be set to a value of 6§ = 5/3
[17-19]. The time evolution of S(z) is found by observing
that the total volume of all droplets grows linearly in time
when a constant volume flux impinges onto the surface. In
agreement with experimental and numerical observation
[17-19], this entails S(¢) ~ 3. Moreover, a lower cutoff to
the scaling at a scale sy/S has been accounted for by a
polydispersity exponent 0 < 7 << 2 [23]. For our numerical
scheme, where the mass flux onto the surface is imple-
mented as sustained addition of droplets of size s, to
random positions of the surface and where overlapping
droplets are subsequently merged [22], it was predicted
[20] to be
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x<L1= f(x)~x0"7, T=19/12. (1b)

The scaling, Eq. (1a), provides an excellent data collapse
of the bump and the dip of the numerical, Fig. 1(a), and the
experimental data, Fig. 1(b). Beyond the dip one can dis-
cern a self-similar scaling regime, Eq. (1b), in the numeri-
cal data, and in only those experimental data with the
vastest range of droplet sizes. On the other hand, in either
case—and particularly pronounced in the experimental
data—noticeable deviations, tails, from the scaling predic-
tion arise for small values of s/S.

In the following, we show that these deviations result
from features of droplet growth at the small length scale,
so. Similar to the approaches in the theory of critical
phenomena [24,25] or of the effect of rough boundaries
in turbulent flows [26,27], scaling will be recovered by
asymptotic analysis [28], which allows us to explicitly
account for different growth mechanisms of small droplets.
Universal and nonuniversal features of the asymptotic
droplet density distribution will be disentangled by discus-
sing the consequences of the different growth mechanisms
for the small droplets in the numerical and experimental
setting, respectively.

Relation to fractal packings.—To explore the role of the
lower cutoff of scaling, we consider the droplet arrange-
ment in breath figures as an example of a fractal packing of
disks (see [29-31] for recent applications in other fields),
and adopt scaling arguments developed to characterize
(disordered) fractal structures to the problem at hand: We
assert that in the scale-separation limit, sy < S, the free
surface area, i.e., the area not covered by droplets, ap-
proaches a fractal with a fractal dimension dy < 2. Self-
similarity with fractal dimension d '+ amounts, then, to the

statement that in an area of size $%/3 a number

of regions of size s2/3 are required to cover the complement
of the surface area covered by all droplets larger than s..
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FIG. 1 (color online).
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Scaling plots of the droplet number density n(s, ¢) for (a) numerical and (b) experimental data, for (a) 8 X 10°

(rightmost tails), 12 X 106, 16 X 10, 20 X 10°, and 24 X 10° (leftmost tails) droplets added to a domain of size 1600 X 1600 [22],
and (b) water droplets on a polyethylene film [21] where eventually the droplet diameters cover the range from a few microns to a few
millimeters. The respective positions of the fail, dip, and bump of the distributions are indicated, and the slope, § — 7 = 1/12, of the
scaling prediction, [Eq. (1b)], is shown by solid lines. The insets show snapshots of the breath figures at an early [blue, (lower) right]
and a late [red, left] time, respectively. Movies of their time evolution and full details of data assimilation and evaluation, as well as

plots of the raw data are given in the Supplemental Material [22].

The fraction of this area in the considered domain of
size §2/3 amounts to

2/3 \C—d)/3
Pls$) = Mo S) s = (%) )
Following [29], we denote the surface area not covered by
droplets as porosity, p(t). It is obtained by evaluating
Eq. (3) for the size s, characterizing the small-scale cutoff
of the fractal, p(r) = p(so, S(¢)).

By its definition the porosity is related the area A,
covered by droplets in a region of area A, via p(f) =
1 — A,;/A,: when the surface area in between droplets
approaches a fractal of zero measure one obtains

” A 50/ S—!
[*aomsnas =421 -y 2

S0 s

where a(s) denotes the area covered by droplets of size s.
Using Eq. (1a) with 8 = 5/3, Eq. (1b), a(s) ~ s*3, and
introducing x = s/S one obtains

A s0/S S0/ S
p(t)=1 ——d~[0 xilf(x)dx'vfo x0T ldx
0 0

A
. S_O 0—71
~(st) @
and comparing Egs. (4) and (3) yields
6 —71=(2-4dy)/3. 5)

Hence, the nontrivial scaling, Eq. (1b), of f(x) for small x
reflects the fractality of the arrangements of droplets in
breath figures with a large scale separation sy < S, that
can faithfully be regarded as a fractal.

This provides an independent, more accurate means to
test the polydispersity exponent: For 7 = 19/12 and S ~ £3,

Eq. (4) implies p(r) ~ r~'/4. Remarkably, none of our
data follow this prediction [Figs. 1(b) and 5(b) in the
Supplemental Material [22]]. Rather than 1/4, we find
0.30 for the numerical and 0.16 for the experimental data.

Hence, the different microphysics of droplet growth and
merging leads to (slightly) different fractal dimensions and
a different small-scale cutoff of scaling. To disentangle the
intermediate self-similar scaling regime from the large
scale (arising from the first generation of droplets,
cf. [32]) and the small-scale physics, we introduce cutoff
functions f(s/S) and (s/so) for large and small droplets,
respectively. f(x) = f(x)/x?"7 takes a constant value f,
for x < 1, and it accounts for the dip and the bump in
n(s, r) for s = S. Similarly, g(s/s,) accounts for the tails of
n(s, t). As shown in the insets of Fig. 2, it approaches
constant values for s > s, and it takes a scaling form
for all times. To arrive at a complete description of the
droplet size distribution, we further discuss this lower
cutoff.

Incorporating the lower cutoff.—We start by writing the
total volume of droplets of size s per unit volume ds and
unit surface area in the form

N

1 =S*2/3<
sn(s, 1) 3

—ds/3
) Fs/9) 8(s/s0). (6

This expression states that in the scaling regime sy <<
s < § the overall volume of droplets of size s on an area
of size S%/3 is proportional to the number of droplets,
Eq. (2), of the considered size.

In equation (6) the fractal dimension dy and the function
&(s/sy) are not universal. We, henceforth, adopt the values
for dy determined by fitting the porosity, and we follow the
evolution of droplets smaller than s, over a small time
interval from ¢ to ¢t + dt in order to relate the form of
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FIG. 2 (color online). Master plot of the universal cutoff
function, f (s/S), which comprises all numerical and experimen-
tal data shown in Fig. 1 (using the same symbols), as well as
additional numerical data shown as black crosses (every 5 X 10*
frames of 44 runs where 4.23 X 107 droplets are added
eventually). The insets show g(s) for (b) numerical and
(c) experimental data at all times. Their shapes (solid lines)
reflect the respective small-scale droplet growth mechanisms,
Egs. (10) and (11). The vertical line in (c) marks s;.

8(s/sq) to different nucleation and growth mechanisms of
small droplets. Let the considered area on the substrate and
the time interval dt be chosen such that this growth is not
influenced by the merging of droplets larger than s,. When
s, is so small that f(s,/S) takes the constant value 7,
Eq. (6) entails

2 S 7d.’/3,\
s 1(sy, 1) =fOS_2/3<§) ! 8(s4/50)

In order to determine g(s../s,) we observe that the volume
density of the droplets smaller than s, amounts to the
cumulative distribution

5. P (safs\—d;/3
V(s*)=[ sn(s,t)ds=%/ (%) ! 8(s/sp)ds. (7)

For values of s, in the scaling regime the increase of
volume is accounted for by increasing the integral domain.
Therefore, an infinitesimal increase of s, to s, + § dt in the
time interval dr amounts to an increase of the volume
density of droplets,

dV _ V(s. +3dr) = V(s.) _ fy (s*

—ds/3 )
E dr W g) 8(S*/So) S.

(8a)
On the other hand, this change must be due to the volume
flux ® onto the fraction of area covered by droplets,
L\@-dp/3
av _ (s, S)P ~ <S—> o, (8b)
dt S

Equating the expressions for dV/dt, Egs. (8a) and (8b),
and dropping the subscript *, one obtains

2/3
2s/s0) ~ 2 . ©)
fo $

This expression provides the desired connection of the
average speed § of the growth of droplets of size s to the
form of the small-scale cutoff g(s/sq) of n(s, 1): it explains
how different microscopic droplet growth laws give rise to
different nonuniversal cutoff functions g(s/sg), and how
the universal scaling is recovered for s >> s,. After all, the
volume growth of large droplets in breath figures is always
proportional to the area exposed to the surface flux
[16,17,20], § ~ ®s*/3. Equation (9) allows us to disen-
tangle universal and nonuniversal contributions to n(s, ).
This major finding of our theoretical treatment is now
substantiated by working out the multiscaling predictions
for the data shown in Fig. 1.

Scaling numerical data.—When a small droplet, of size
5o, has been added to the surface, it is merged with a
droplet on the surface when the droplets overlap. As a
consequence, a droplet of radius s'/3 will capture small
droplets of radius s(l)/ 3, that are added in a distance smaller

than s'/3 + s}/* from its center. In the absence of other
droplets, this growth amounts to

= (I)[Sl/3 + s(lJ/3]2 = q)s2/3[1 + (s_0)1/3i|2.
S

The term in square brackets accounts for an enhanced
growth of small droplets s = s, which ceases rapidly for
increasing s. In practice, the decay is even faster since the
capture regions of neighboring droplets overlap. To fit the
simulation data, Fig. 2(b), one needs a nontrivial prefactor
0.76 and an exponent close to 0.78 rather than 1/3,

8(s/sy) = 0.07[1 + 0.76(1—0)0'78]_2. (10)

Using Eq. (6) and & — 7 = 0.3 this provides a perfect data
collapse of all numerical data, Fig. 2(a).

Scaling experimental data.—In the experimental setting,
the growth rate of the droplets has two contributions. For
small droplets, growth is limited by the diffusion of water
molecules on the substrate towards the contact line of
the droplet. As derived in [33] and observed in the experi-
ments of [32], the radius of small droplets grows then like
r~t'/4, such that § ~ ®s~'/3. For larger droplets, the
volume flux from the vapor phase onto the droplets is again
proportional to the exposed droplet surface, such that
§ ~ ®s2/3. These growth contributions combine to

§~ <1>s2/3(1 + SFO) = 8(s/s9) = b(l + %) l, (11)
where s; = 1.5 X 107 mm? is the crossover size scale and
b=2 X 1072 is a normalization constant. Inserting Eq. (11)
into Eq. (9) provides an excellent prediction for g(s/sg),
Fig. 2(c). Also, for the experimentally measured droplet
size distributions, one obtains a perfect data collapse of the
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appropriately scaled droplet number density n(s, ¢) for all
different times, Fig. 2(a).

Discussion.—For the numerical data, s, amounts to the
volume of the smallest droplets in the system, Fig. 2(b),
and for the experimental data it is about one order of
magnitude larger than the smallest observed droplets,
Fig. 2(c). In either case g(s) saturates for s = 10%s,. On
the other hand the scaling behavior Eq. (1b) is only acces-
sible for values of s below the dip of the distribution,
ie., for s <1072 S. It can, hence, only be resolved in
simulations where 10™* < 5/, resulting in the observed
scaling regime of about 1-2 decades, in the numerical data,
Fig. 1(a), and in the experimental data with the largest
accessible scale separation, Fig. 1(b).

Because of the relatively small scaling range, the droplet
size distribution of breath figures cannot merely be ideal-
ized as a self-similar process with a single relevant length
scale S(¢) [16-19]. Rather, one explicitly has to cope with
the growth law of the smallest droplets in the system. Via
its (slight) effect on the fractal dimension characterizing
the free space in between the droplets, Eq. (5), it sets the
value of the polydispersity exponent 7, and it leads to
massively different cutoff functions £(s/sq), Figs. 2(b)
and 2(c), that can completely dominate the shape of the
droplet size distribution, Fig. 1(b).

When both the large scale and the small scale cutoffs are
properly accounted for via Eqs. (10) and (11), a remarkable
data collapse of all experimental and numerical data into a
single plot is achieved, Fig. 2(a). This recovery of scaling
establishes a novel gateway connecting features of the
microscopic droplet growth on surfaces to gross features
of the evolution of the droplet size distribution.
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