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Most helix-coil transition theories can be characterized by three parameters: energetic, describing the

(free) energy cost of forming a helical state in one repeating unit; entropic, accounting for the decrease of

entropy due to formation of the helical state; and geometric, indicating how many repeating units are

affected by the formation of one helical state. Depending on their effect on the helix-coil transition,

solvents or cosolutes can be classified with respect to their action on these parameters. Solvent interactions

that alter the entropic cost of helix formation by their osmotic action can affect both the stability

(transition temperature) and the cooperativity (transition interval) of the helix-coil transition. Consistent

inclusion of osmotic pressure effects in a description of helix-coil transition, for poly(L-glutamic acid) in

solution with polyethylene glycol, can offer an explanation of the experimentally observed linear

dependence of transition temperature on osmotic pressure as well as the concurrent changes in the

cooperativity of the transition.
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The helix-coil transition is central to many processes in
living matter [1,2]. To mimic the interactions and struc-
tures found in nature, in vitro experiments related to bio-
polymers are usually performed in solutions of different
composition. Naturally, a theoretical description of solvent
composition effects is a necessary component of any helix-
coil transition theory. There are several approaches that
offer such a description within the standard Zimm-Bragg
model [3,4]. Farago and Pincus [5] proposed a classifica-
tion of solvents based on their action on the parameters
within this model. They have shown that solvents that
promote the relative stability of the helical state, compared
to the coil, rescale the parameter s, altering the melting
temperature, while solvents that affect the helix-coil inter-
facial free energy modify �, changing the melting interval.
Recent circular dichroism measurements of the helix-coil
transition of poly(L-glutamic acid) (PLGA) in an aqueous

solution of cosolvent polyethylene glycol (PEG) [6] show
that besides stabilizing helices, which agrees with stability-
altering solvent description of Farago and Pincus, the in-
crease of PEG concentration also couples with the decrease
of cooperativity, which is harder to explain within the
Zimm-Bragg approach or its modifications [5]. The main
action of PEG is to modify the solvent-accessible volume
within the polypeptide (see Fig. 1). It can thus fundamen-
tally change the polypeptide conformational space and the
associated conformational entropy. It is this coupling be-
tween the osmotic action of the PEG and the modifications
on the polypeptide conformational space that will be ela-
borated in what follows. Here, we propose a consistent
theoretical framework in which a single osmotic action of
PEG solution, encoded in the osmotic pressure variation of
the free energy difference between the helical and coil
repeating units, engenders changes both in the melting
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temperature and in the melting interval, thus correctly
describing the experimental data.

A minimal formulation of the Zimm-Bragg model im-
plies a characteristic equation of the form ð1� �Þ�
ðs� �Þ � s� ¼ 0, where the two phenomenological pa-

rameters are defined as s ¼ expð�H�T�S
T Þ, and � is the

temperature-independent entropic cost of creating a helix
domain within coil regions [4]. The difference of enthal-
pies �H ¼ Hhelix �Hcoil accounts for the relative ener-
getic gain of helix formation, and �S ¼ Shelix � Scoil
describes the entropic cost of helix formation, with T
the absolute temperature, measured in units of kB. The
helix-coil transition occurs at the point where the ener-
getic gain is compensated by the entropic loss, i.e., s ¼
expð�H=TÞ= expð�SÞ � 1, resulting in the melting tem-
perature Tm � �H=�S. The interval of transition can be
estimated as �T � ffiffiffiffi

�
p

. Within the Zimm-Bragg formula-
tion, the solvent effects that alter the parameter s would
lead to changes in the stability of the helix, modifying its
transition temperature Tm, while the solvent affecting �
would alter only the cooperativity of transition �T [5].
In this context, s and � are introduced as completely
independent parameters corresponding to two different
mechanisms of solvent action. Any solvent effects that
simultaneously affect both transition stability and cooper-
ativity would then require more than a single mechanism of
action, which is hard to imagine for such a simple solute as
PEG. Even within this Zimm-Bragg parametrization, one
might suspect that the relative entropic cost of helix for-
mation �S and the entropic cost of domain formation �
could be in principle related, since they both include the
entropy difference between the repeating units in the hel-
ical and coil conformations.

The helical structure of biopolymers is mainly stabilized
by intermolecular hydrogen bonding between repeating
units, the presence of hydrogen bonds being a prerequisite
for helix formation. A statistical description of the solvent
effects on the helix-coil transition requires at least three
parameters: a geometric parameter, �, that describes the
sequential geometry of hydrogen bond formation; an en-
ergetic parameter, W ¼ V þ 1 ¼ expðU=TÞ, where U is
the energy of a hydrogen bond; and an entropic parameter,
Q, that stands for the ratio between the number of all
accessible states versus the number of states available for
the repeating unit in a helical conformation. For a solvent-
free hypothetical in vacuo model, Q is temperature inde-
pendent. Addition of osmolyte to the system changes the
entropy-enthalpy balance, and as we show later in the

Letter, Q is redefined in response. This redefined ~Q is a
function of temperature, energies of cosolvent-polypeptide
interaction, and cosolvent entropy and is no longer purely
entropic after osmolyte has been added. We first describe
the helix-coil transition in vacuo, i.e., without any solvent.
The Hamiltonian of a solvent-free model [7,8] can be
written in the form

��H0ðf�igÞ ¼ J
X

N

i¼1

�ð�Þ
i (1)

as considered in [7]. Here � ¼ T�1, N is the number of
repeating units, and J ¼ U=T is the temperature-reduced

energy of hydrogen bonding, �ð�Þ
j ¼ Q

��1
k¼0 �ð�jþk; 1Þ,

where �ðx; 1Þ stands for the Kronecker symbol and �l ¼
1; . . . ; Q. The spin variable � describes the state of each
repeating unit by assigning to it one of the Q possible
conformations: conformation 1 corresponds to the helical,
and the remaining Q� 1 conformations to the coil state.
The partition function

Z0ðV;QÞ ¼ X

Q

f�i¼1g

Y

N

i¼1

½1þ V�ð�Þ
i �; (2)

can be evaluated by applying the transfer matrix method,
corresponding to Eq. (1) (see Ref. [7]), resulting in the
characteristic equation

���1ð��WÞð��QÞ ¼ ðW � 1ÞðQ� 1Þ: (3)

In the thermodynamic limit, the problem simplifies con-
siderably. It is enough to study the two largest eigenvalues
obtained from Eq. (3). Numerically they are closest at the
point where asymptotes WðTÞ and Q cross [Fig. 2(b)], a
point defining the transition temperature T0. This is in
accord with general physical considerations: transition
occurs when entropy and energy compensate each other,
at T0 ¼ U= lnQ. The minimal distance between the
two eigenvalues can be estimated as Q1�� (see [8]) and
is related to the helix-coil transition interval, a coopera-
tivity measure. To quantify the transition interval, it is

V∆

FIG. 1 (color online). Two fragments of 15 repeat units (1–15
of 2JU4 and 16–30 of 1BBA) from protein database structures
are shown to illustrate the change in solvent-accessible volume
� �V between disordered and �-helical conformations.
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appropriate and informative to introduce the spatial corre-

lation length � ¼ ln�1ð�1

�2
Þ, where �1 and �2 are the first

and second leading eigenvalues of the characteristic equa-
tion. The temperature-dependent �ðTÞ has a maximum at
the transition point. Its value is related to the transition

interval as �T � ��1
max �Qð1��Þ=2 [7,8].

Up until this point, we have not taken into consideration
any specific cosolute or solvent effects. Solvents able to
promote solvent-polymer hydrogen bonds have been ana-
lyzed in Refs. [7,9]. Here, however, we consider another
vast group of cosolutes, which do not affect hydrogen
bonding directly but do modify the polypeptide conforma-
tions by changing the chemical potential of the solvent or
the osmotic pressure of the solution. A classical example of
such a cosolute is PEG, which can act as an osmoticant and
as a depletion agent [10]. Because of their size, PEG
molecules are depleted near the polypeptide chain, exert-
ing an osmotic pressure that changes the energetic cost of
certain conformations vs. others. These effects of PEG are
well documented and have been explored extensively [11].
The osmotic pressure of the solution depends only on
the concentration of PEG, provided that all the other

components can equally access the helix and the coil state
of the polypeptide. It is a known function of its concentra-
tion that has been investigated in detail [12].
Our model of solvent is based on the following assump-

tions: (i) solvent molecules can interact with (affect) both
helical and coil repeating units of the polypeptide;
(ii) binding of solvent molecules changes the free energy
of a repeating unit, depending on the conformation of
the repeating unit (Eh for helix, and Ec for coil);
(iii) polypeptide-solvent interaction depends on the orien-
tation of solvent molecules around the repeating unit and
the number of solvent orientations q > 2 account for the
solvent entropy; and iv) a spin variable �i 2 ½1; q� de-
scribes the state (orientation) of a solvent molecule and
its value 1 corresponds to solvent binding.
While the various contributions to Eh, Ec are difficult to

disentangle, the overall difference �E ¼ Eh � Ec can be
analyzed explicitly. The (free) energy difference �E de-
scribes the effect of the co-solute, and the larger this
difference, the stronger the stabilization of the helical state
vs. the coil state. Since the main action of PEG and other
osmolytes [13] seems to proceed through the aqueous
environment and not through direct (binding) interactions
with the peptide, it can be described via the depletion-
induced osmotic pressure corresponding to the osmotic
work required to drive the chain through the helix-coil
transition [14]

j�Ej ¼ �osm� �V: (4)

Here �osm its the osmotic pressure of PEG solution, and
� �V is the volume of water that must be exchanged with the
bulk when the polypeptide chain goes through the transi-
tion [15] (see Fig. 1). This means that the helix-coil tran-
sition responds in a way analogous to a semi-permeable
membrane, excluding solvent from certain portions of the
polypeptide chain. The sign of �E depends specifically on
the details of the osmotic action of PEG, stabilizing or
destabilizing the helix vs. the coil state.
We now add these solvent-mediated changes to the free

energy of a repeating unit in the original in vacuo
Hamiltonian H0 of the helix-coil transition [7–9,16]. This
results in

��Hðf�i; �igÞ ¼ ��H0ðf�igÞ � �Hsolvðf�ig; f�igÞ

¼ X

N

i¼1

ðJ�ð�Þ
i þ Icð1� �ð1Þ

i Þ�ð�i; 1Þ

þ Ih�
ð1Þ
i �ð�i; 1ÞÞ; (5)

where Ic;h ¼ Ec;h=T. The second and third terms on the

right-hand side of Eq. (5) describe solvent interactions
with repeating units in the coil and helical conformations,
respectively. The partition function is then

FIG. 2 (color online). Temperature dependence of two largest
eigenvalues at different �E ¼ Eh � Ec; Q ¼ 60, � ¼ 3, q ¼ 3.
T0 ¼ U= lnQ is the melting temperature of solvent-free model.
�1 is the rightmost and �2 is the leftmost curve.
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ZðV; Ih; Ic; QÞ ¼ X

Q

f�i¼1g

X

q

f�i¼1g
expð��Hðf�i; �igÞÞ: (6)

Each of the solvent degrees of freedom,�i, is coupled with
a single �i and the lattice expansion for Eq. (6) is of a
‘‘decorated lattice’’ type [17]. This allows one to sum out
the solvent degrees of freedom. After a rearrangement that
makes use of the Kronecker delta properties (for details see
[17]), Eq. (6) becomes

ZðV; Ih; Ic; QÞ ¼ ðqþ eIhÞNZ0ðV; ~QÞ; (7)

where

~Q ¼ 1þ ðQ� 1Þ e
Ic þ q� 1

eIh þ q� 1
: (8)

When Eq. (7) is compared with Eq. (2), it becomes obvious
that the two expressions are identical up to an irrelevant
multiplicative factor. Thus, we can conclude that the only
effect of the osmotic action of PEG is the transformation of

the entropic parameter Q ! ~Q. Therefore, the same char-

acteristic equation, Eq. (3), but with a redefined ~Q remains

valid: ���1ð��WÞð�� ~QÞ ¼ ðW � 1Þð ~Q� 1Þ. Since ~Q

is now temperature dependent, the W � ~Q condition oc-
curs at temperatures different from the melting temperature
of the original model T0. In fact, two regimes of tempera-

ture dependence of ~Q are possible, as shown in Figs. 2(a)
and 2(c) depending on the sign of �E. Assuming first that
the PEG osmotic pressure stabilizes the helix, �E � 0, the
helix-coil transition then takes place at higher temperatures
[Fig. 2(a)]. However, this is not the only effect of the PEG
osmotic action: the distance between eigenvalues also
becomes larger and the transition interval thus decreases.
For �E � 0, the situation is reversed: asymptotes cross at
lower temperatures (destabilization) and the transition in-
terval increases [Fig. 2(c)]. What is interesting is that even

after the rescaling of parameter Q ! ~Q, Eq. (8), the point
of closest approach between the two largest eigenvalues

can still be estimated from the crossing between W and ~Q
curves.

To study the stability and cooperativity of this general-
ized model, we analyze the temperature dependence of the
correlation length from the computed eigenvalues. This
allows us to calculate the transition point (Tm) and the
cooperativity (�max) as a function of�E (Fig. 3). As shown
in Fig. 3 (see inset), the helix-coil melting temperature
grows linearly with increased �E, indicating the increased
stability of the system. This is consistent with the experi-
mentally observed linear increase of the transition tem-
perature with osmotic pressure as reported by Stanley and
Strey and Koutsioubas et al [6,18]. On the other hand, the
cooperativity measure �max decreases at the same time
(Fig. 3), as has been observed by Koutsioubas et al. [6].
This twofold action of the PEG cannot be captured by the
Zimm-Bragg model [5,6], in which the stability and the

cooperativity of the transition are described by two inde-
pendent parameters.
Why can’t the Zimm-Bragg based approach describe a

decrease of cooperativity concurrently with an increase in
stability? As shown in [8], the Zimm-Bragg parameters
can be recast in terms of our parameters as s ¼ W=Q and
� ¼ Q1�� � ��2. The entropic parameter Q is present in
both s and �. Obviously its changes will alter both the
stability and the cooperativity of the system. The assump-
tion of independence of s and �, an inherent property of
Zimm-Bragg and related models, leads to a description of
the effects of PEG [5] that cannot easily be reconciled
with experiments Ref. [6]. We showed above that the
resolution of this discrepancy is impossible within the
Zimm-Bragg model and that an alternative, more detailed
microscopic description of the PEG action, is necessary,
which in its turn leads to a picture consistent with experi-
mental results.
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