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We perform a density-matrix renormalization group (DMRG) study of the S ¼ 1
2 Heisenberg anti-

ferromagnet on the kagome lattice to identify the conjectured spin liquid ground state. Exploiting SU(2)

spin symmetry, which allows us to keep up to 16 000 DMRG states, we consider cylinders with

circumferences up to 17 lattice spacings and find a spin liquid ground state with an estimated per site

energy of�0:4386ð5Þ, a spin gap of 0:13ð1Þ, very short—range decay in spin, dimer and chiral correlation

functions, and finite topological entanglement � consistent with � ¼ log22, ruling out gapless, chiral, or

nontopological spin liquids in favor of a topological spin liquid of quantum dimension 2, with strong

evidence for a gapped topological Z2 spin liquid.

DOI: 10.1103/PhysRevLett.109.067201 PACS numbers: 75.10.Jm, 75.40.Mg

A pervasive feature of physics is the presence of sym-
metries and their breaking at low energies and tempera-
tures. It would be an unusual system in which at T ¼ 0
(quantum) fluctuations are so strong that all symmetries
remain unbroken in the ground state. In magnetic systems,
such a state is dubbed a quantum spin liquid (QSL)[1]
and is most likely to occur if fluctuations are maximized
by low-dimension, low-spin, and strong geometrical
frustration; the search for a QSL has thus focused on
frustrated S ¼ 1

2 quantum magnets in two dimensions. The

Heisenberg antiferromagnet on the kagome lattice [2]
(KAFM) is a key candidate, described by the S ¼ 1

2 model

H ¼ X

hi;ji
~Si � ~Sj; (1)

with hi; ji nearest neighbors.
Experimentally, the focus is on the herbertsmithite

ZnCu3ðOHÞ6Cl2, modeled by Eq. (1) on a kagome lattice
with additional Dzyaloshinskii-Moriya interactions [3]. It
is thought that the ground-state is a spin liquid [4–10], with
no onsite magnetization [6,11] and no spin gap [11–14]
within very tight experimental bounds.

On the theoretical side, the kagome model of Eq. (1)
remains a formidable challenge. While all proposed
ground states show no magnetic ordering, they can be
classified by whether they break translational invariance
or not. The former type of ground state, a valence bond
crystal (VBC), was pioneered byMarston [15]. The emerg-
ing proposal was that of a ‘‘honeycomb VBC’’ (HVBC)
with a hexagonal unit cell of 36 spins [16–20] sharing in
dimer-covered hexagons and a sixfold ‘‘pin wheel’’ at the
center. On the other hand, a multitude of QSL states were
proposed [21–32]. Proposals for a QSL ground state
include a chiral topological spin liquid [21,22,33,34], a

gapless spin liquid [23–26], and various Z2 spin liquids
[27–30] with topological ground-state degeneracy.
In the past, numerical methods failed to resolve the issue

conclusively. Quantum Monte Carlo calculations face the
sign problem. Sizes accessible by exact diagonalization
[2,35–48] are currently limited to 48. Other approaches
diagonalized the valence bond basis or applied the con-
tractor renormalization group (CORE) method, or the
coupled cluster method (CCM) [49–55]. The multiscale
entanglement renormalization ansatz (MERA) [56] found
the VBC state lower in energy than the QSL state reported
in an earlier density-matrix renormalization group (DMRG)
study of tori up to 120 sites [31].
Recently, strong evidence for a QSL was found in a

large-scale DMRG study [57] considering long cylinders
of circumference up to 12 lattice spacings. Ground-state
energies were substantially lower than those of the VBC
state, and an upper energy bound substantially below the
VBC-state energy was found; the ground state, having the
hallmarks of a QSL, was not susceptible to attempts to
enforce a VBC state. As to the type of QSL, Ref. [57] did
not provide direct evidence for a Z2 topological QSL.
This has sparked a series of papers trying to identify the
QSL [21,24,32,54,58], where again chiral spin liquids and
gapless U(1) spin liquids were advocated and a classifica-
tion of Z2 spin liquids achieved. At the moment, the issue
is not conclusive.
Here we study the KAFM using DMRG [59–61], in the

spirit of Ref. [57]. DMRG is a variational method in the
ansatz space spanned by matrix product states, which
allows it to find the ground state of one-dimensional (1D)
systems efficiently even for large system sizes. It can also
be applied successfully to two-dimensional (2D) lattices
by mapping the short-ranged 2D Hamiltonian exactly to
a long-ranged 1D Hamiltonian [57,62–66]. DMRG cost
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scales roughly exponentially with entanglement entropy,
such that area laws limit system sizes, and DMRG favors
open boundary conditions (OBCs) over preferable periodic
boundary conditions (PBCs). The conventional compro-
mise [57], taken also by us, is to consider cylinders, i.e.,
PBCs along the short direction (circumference c) and
OBCs along the long direction (length L), where boundary
effects are less important. Cost is dominated exponentially
by circumference c. We use two different 1D mappings
(labeled as XC and YC plus cylinder size) (see
Supplemental Material [67]) to check for undesired map-
ping dependencies of the DMRG results. Instead of earlier
Abelian U(1) DMRG with up to 8000 ansatz states, we
employ non-Abelian SU(2) DMRG [68,69] based on irre-
ducible representations corresponding to 16 000 ansatz
states in a U(1) approach. This has crucial advantages:
available results can be verified with much higher accu-
racy. The circumference of the cylinders can be increased
by almost 50% from 12 to 17.3 lattice sites (up to 726
sites in total), strongly reducing finite size effects; we
also consider tori of up to 108 sites. We can eliminate
the spin degeneracy that necessitates pinning fields in
U(1)-symmetric simulations and avoid artificial constraints
in gap calculations, making them more accurate and
reliable. We also present results on spin, dimer, and
chiral correlation functions, the structure factor, and topo-
logical entanglement entropy. All data agree with a gapped
nonchiral Z2 spin liquid; other QSL proposals for the
KAFM are inconsistent with at least one of the numerical
results.

Energies.—Energies for cylinders of fixed c and L are
extrapolated in the truncation error of single-site DMRG
[70]; bulk energies per site are extracted by a subtraction
technique [66] and extrapolated to L ! 1. Results for
various 1D mappings and c are displayed in Table I. We
also show the spin (triplet) gap to the S ¼ 1 spin sector. We
confirm and extend earlier results [57]. At 16 000 states,
DMRG is highly accurate; negligible changes in energy for

substantially larger c confirm that the thermodynamic limit
energy is found, which we place at �0:4386ð5Þ (Fig. 1).
Similar to Ref. [57], we find the energy to be significantly
below that of VBC states and no trace of a VBC in the
correlation patterns. Except for the edges, bond energies
are fully translationally invariant. All results are consistent
with strict variational upper bounds obtained without
extrapolations from independent DMRG calculations for
infinitely long cylinders using the iDMRG variant [71],
which are below the VBC energies.
On the issue of a spin (triplet) gap [45,72], Yan et al. [57]

argue in favor of a small but finite spin gap. SU(2) DMRG
computes the S ¼ 1 state directly and more efficiently;
boundary excitations are excluded by examining local
bond energies. We find the spin gap (Table I and Fig. 2)
to remain finite also for cylinders of large c. Whereas the
results for small c agree with the S ¼ 1 state energies and
gaps reported in Ref. [57], they display significant differ-
ences for larger c, perhaps due to the more complex earlier
calculation scheme. SU(2)-invariant results evolve more
smoothly with c, allowing a tentative extrapolation to a spin
gap �E ¼ 0:13ð1Þ in the thermodynamic limit. Size depen-
dence is small, in line with very short correlation lengths.
The finite spin gap contradicts conjectures of aUð1Þ or other
gapless spin liquids. For the calculation of the singlet gap
found to be finite in Ref. [57], SU(2) DMRG does not offer
a significant advantage to be reported here.
Correlation functions.—For all cylinders, we find an anti-

ferromagnetic spin-spin correlation function h ~Si � ~Sji along
different lattice axes with almost no directional dependence.
Exponential fits with a very short correlation length of � ’ 1
[Fig. 4(a)] were consistently better than power law fits, in
agreement with a spin gap. This is not consistent with an
algebraic spin liquid [23], where the correlations are pre-
dicted to decay according to a power law� 1

x4
.

TABLE I. Ground-state energy per site (E=N) and gaps for
L ¼ 1 cylinders (circumference c). Errors are from extrapola-
tion; comparisons are with Ref. [57] except for the tori.

c E=N gap �E Eearlier �E;earlier

YC4 4 �0:446 77 0.2189 �0:4467

YC6 6 �0:439 15ð5Þ 0.1396(6) �0:439 14 0.142(1)

YC8 8 �0:438 38ð5Þ 0.135(3) �0:438 36ð2Þ 0.156(2)

YC10 10 �0:4378ð2Þ �0:4378ð2Þ 0.070(15)

YC12 12 �0:4386ð4Þ �0:4379ð3Þ
XC8 6.9 �0:438 26ð4Þ 0.13899(1) �0:438 24ð2Þ 0.1540(6)

XC12 10.4 �0:438 29ð7Þ 0.134(4) �0:4380ð3Þ 0.125(9)

XC16 13.9 �0:4391ð3Þ 0.130(7)

XC20 17.3 �0:4388ð8Þ
Torus 3 �0:436 278 0.2687 �0:436 278 0.2687 [47]

Torus 4 �0:4383ð2Þ 0.151 �0:435 91 0.140 [31]

Torus 6 �0:4383ð3Þ 0.1148(1) �0:431 11 0.105 [31]
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FIG. 1 (color online). Bulk energies per site. Lengths are in
units of lattice spacings. The HVBC result [18,19] and the upper
bounds of MERA [56] and DMRG [57] apply directly to the
thermodynamic limit; 2D estimates are extrapolations.
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We also consider the static spin structure factor Sð ~qÞ ¼
1
N

P
ije

i ~q�ð ~ri�~rjÞh ~Si � ~Sji, ~q in units of basis vectors ( ~b1, ~b2) of
the reciprocal lattice. The spectral weight is concentrated
evenly around the edge of the extended Brillouin zone,
with not very pronounced maxima on the corners of the
hexagon (Fig. 3). Results for large cylinders agree well
with ED results for tori up to 36 sites [44]. All our Sð ~qÞ are
in accordance with the prediction for a Z2 QSL [27].

We also find antiferromagnetically decaying, almost
direction-independent dimer-dimer correlations, for
which, again, an exponential fit is favored [Fig. 4(b)], in
agreement with a singlet gap. Our data do not support the
algebraic decay predicted [23] for an algebraic QSL.

Chiral correlation functions [40] hCijkClmni ¼
h ~Si � ð ~Sj � ~SkÞ � ~Sl � ð ~Sm � ~SnÞi, where the loops consid-

ered are elementary triangles, did not show significant
correlations for any distance or direction and decay expo-
nentially (Fig. 5), faster than the spin-spin correlations.
Expectation values of single loop operators Cijk vanish, as

expected for finite size lattices. Chiral correlators for other
loop types and sizes decay even faster. Our findings do not
support chiral spin liquid proposals [21,22,34].

Topological entanglement entropy.—To obtain direct
evidence regarding a topological state, we consider the
topological entanglement entropy [73–75]. For the ground
states of gapped, short-ranged Hamiltonians in 2D, entan-
glement entropy scales as S ’ c, if we cut cylinders
into two, with corrections in the case of topological
ground states [76]. We examine Renyi entropies S� ¼
ð1� �Þ�1log2tr�

�, 0 � �<1, where � is a subsystem
density matrix. Scaling is expected as S� ’ �c� �, where
� is an �-dependent constant. �, the topological entangle-
ment entropy, is independent of� [77–79] and depends only
on the total quantum dimensionD as � ¼ log2ðDÞ [73,74].
In our mappings, DMRG gives direct access to density
matrices of cylinder slices. We calculate S� for cylinders
of fixed c and extrapolate in L�1 to L ! 1; a linear
extrapolation in c ! 0 yields �. Results are 1D mapping
independent. We show intermediate values of � (Fig. 6),
which all show a clearly finite value of �, with a value very
consistent with � ¼ 1; large-� results agree. Small-�
results are unreliable, as DMRG does not capture the tail

FIG. 3 (color online). Two static structure factors Sð ~qÞ; kx, ky
in units of reciprocal lattice basis vectors. Results are indepen-
dent of the choice of 1D mapping (not shown).
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FIG. 4 (color online). Log-linear plots of the absolute value of
the Fig. 4(a) spin-spin and Fig. 4(b) dimer-dimer correlation
functions versus the distance x ¼ ji� jj for a XC12 [Fig. 4(a)]
and a YC8 [Fig. 4(b)] sample along one lattice axis with
exponential and power law fits. An x�4 line is shown as a guide
to the eye.
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FIG. 2 (color online). Plot of the bulk triplet gap for infinitely
long cylinders versus the inverse circumference c in units of
inverse lattice spacings with an empirical linear fit to the largest
cylinders, leading to a spin gap estimate of 0.13(1).
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of the spectrum of � properly, but also point to a finite value
of �, and hence a topological ground state. The quantum
dimension is D¼2, excluding chiral spin liquids (�¼1=2

orD ¼ ffiffiffi
2

p
[77]). Rigorously, DMRGonly provides a lower

bound on D [80], but the bound is essentially exact as
DMRG is a method with low entanglement bias [81].

Conclusion.—Through a combination of a large number
of DMRG states, large samples with small finite size effect,
and the use of the SU(2) symmetry of the kagomemodel, we
have been able to corroborate earlier evidence for a QSL as
opposed to a VBC, due to energetic considerations and
complete absence of breaking of space group invariance,
although DMRG should be biased towards VBC due to its
low-entanglement nature and the use of OBC. On the basis
of the numerical evidence (spin gap, structure factor, spin,
dimer and chiral correlations, topological entanglement
entropy) numerous QSL proposals can be ruled out for the
kagome system.On the system sizes reached, the spin gap is

very robust and essentially size independent, ruling out all
proposals for gapless spin liquids, consistent with the ex-
ponential decay of correlators. Individual gapless QSL
proposals make other predictions not supported by numeri-
cal data, e.g., the static spin structure factor [23]. Another
strong observation is the very rapid decay of chiral corre-
lations, ruling out proposals related to chiral QSL. The third
strong observation is finite topological entanglement,which
implies a topologically degenerate ground state for the
kagome system. For quantum dimension 2, as found here,
we have in principle, for a time-reversal invariant ground
state, a choice between a Z2 phase and a double-semion
phase [82,83]. A Z2 QSL emerges straightforwardly in
effective field theories of the kagomemodel as a mean-field
phase stable under quantum fluctuations, breaking a U(1)
gauge symmetry down to Z2 due to a Higgs mechanism
[84], and, microscopically, a resonating valence bond state
formed from nearest-neighbor Rokhsar-Kivelson dimer
coverings of the kagome lattice directly leads to a Z2 QSL
[85,86] albeit for a variational energy far from the ground-
state energy. The concentration of weight of the structure
factor at the hexagonal Brillouin zone edge with shallow
maxima at the corners would also point to the Z2 QSL as
proposed by Sachdev [27], and a Z2 QSL is also consistent
with all other numerical findings. All this provides strong
evidence for the Z2 QSL, whereas to our knowledge, no
plausible scenario for the emergence of a double-semion
phase in the KAFM has been discovered so far, making it
implausible, but of course not impossible. An analysis of the
degenerate ground-state manifold as proposed in Ref. [80],
not possiblewith our data, would settle the issue. Even if the
answer provided final evidence for a Z2 QSL, many ques-
tions regarding the detailed microscopic structure of the
ground-statewave functions and the precise nature of theZ2

QSL would remain for future research.
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Note added.—Recently, we became aware of Ref. [81],

which calculates topological entanglement entropy from
von Neumann entropy for a next-nearest neighbor modifi-
cation of the KAFM, perfectly consistent with our results
of D ¼ 2 for the KAFM itself.
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[52] S. Capponi, A. Läuchli, and M. Mambrini, Phys. Rev. B

70, 104424 (2004).
[53] D. Poilblanc, M. Mambrini, and D. Schwandt, Phys. Rev.

B 81, 180402 (2010).
[54] D. Schwandt, M. Mambrini, and D. Poilblanc, Phys. Rev.

B 81, 214413 (2010).
[55] O. Götze, D. J. J. Farnell, R. F. Bishop, P. H.Y. Li, and

J. Richter, Phys. Rev. B 84, 224428 (2011).
[56] G. Evenbly and G. Vidal, Phys. Rev. Lett. 104, 187203

(2010).
[57] S. Yan, D.A. Huse, and S. R. White, Science 332, 1173

(2011).
[58] D. Poilblanc and G. Misguich, Phys. Rev. B 84, 214401

(2011).
[59] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
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