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Following a short discussion of the granular model for an inhomogeneous superconductor, we review

the Uemura and Homes correlations and show how both follow in two limits of a simple granular

superconductor model. Definite expressions are given for the almost universal coefficients appearing in

these relationships in terms of known constants.
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Introduction.—The model of a granular superconductor,
in which superconducting grains are coupled via Josephson
tunneling, is considered [1–4]. This model is a very useful
paradigm both in its own right and because it is applicable
to a number of real situations. These range from man-made
Josephson arrays to a variety of inhomogeneous super-
conductors. Without insisting on the relevance to high-Tc

superconductors, one may note that the ubiquitous phe-
nomenon of the ‘‘pseudogap’’ in such materials [5] finds a
very natural qualitative explanation in this model. This
explanation is very clear in the high intergrain resistance
case (see part A below). The real transition is the phase
locking of the grains while around the (higher) Tc of the
grain material, each grain develops (continuously in tem-
perature) a fluctuating order parameter, which leads to a
smaller density of states near the Fermi level. Thus, the
formation of the pseudogap in this model is just a cross-
over, whose width is determined by, and decreases with,
the grain size. These grains are evidently due to regions in
the system whose effective Tc is higher due to fluctuations
in the doping level. The sensitivity of Tc to the doping
level, compared with the appropriate interface energy, will
determine whether, effectively, grains will form (described
later in the discussion). The case of a d-wave supercon-
ductor, where Tc is sensitive to disorder, is immediately
highlighted.

In this Letter we consider the question of the universal
correlations reported experimentally between the low-
temperature superfluid density ns and the transition tem-
perature Tc (Refs. [6–9]). Three such correlations have
been reported for high-Tc superconductors [10,11], and
in some cases for usual ‘‘low-Tc’’ ones. Two of them are
different from each other while the third may be related to
the second; these will be examined shortly. It is of great
interest to understand the physics behind such correlations
[12,13] and their respective ranges of validity [14–16]. We
show that both of these clearly different correlations follow
from two limits of a simple classical granular supercon-
ductor model [1–4] and derive the coefficients in terms of
natural constants and the gap-to-Tc ratio for the underlying
grain material. Our derivation is embarrassingly simple.

The Uemura-Homes law follows when the critical tem-
perature for the intergrain phase locking is much smaller or
comparable to that for the grain material. The strongly
inhomogeneous, granular, picture is a broadly applicable
paradigm [17], describing many diverse systems [3,18,19].
Recently, there is strong evidence for the relevance of this
paradigm also for high temperature superconductors [20].
In 1988, Uemura et al. [6] reported, for underdoped

high-Tc superconductors, the proportionality of ns=m
�

(or ��2, where � is the penetration length and m� the
effective carrier mass, which is of the order of 5m for
most of the considered materials, where m is the electron
mass) to Tc. Here ns was determined from the muon spin
relaxation rate for four high Tc families with varying
doping level (carrier density). The coefficient in the
linear relationship is such that a carrier density of ns ¼
2� 1021 cm�3 corresponds to Tc ’ 25 K.
In 2004, Homes et al. [7] reported a different correlation,

valid more generally, including the overdoped and
optimally doped cases: �s0 ’ 120�dcTc, where �s0 is the
strength of the condensate determined by optical measure-
ments, and �dc is the normal-state dc conductivity near Tc.
The superfluid density is related to the superconducting
plasma frequency �s0 � !2

ps / ns=m
� as well as the pene-

tration depth �s0 ¼ c2=�2
0. Nine different high-Tc material

families with varying doping (including optimal and be-
yond) were examined, as well as the phonon-mediated
superconductors Pb and Nb, shown in Fig. 1. This result
has been interpreted [8] in terms of the conventional de-
crease of ns proportional to ‘=�0 / Tc� in the dirty limit of
BCS superconductors, where � and ‘ are the mean-free
time and scattering length and �0 the zero-temperature
BCS coherence length (�0 / vF=Tc). The questions of
why these materials are in the dirty limit, when Tc is so
high and the coherence length so small, and to what extent
can the BCS-type relationships be used for high Tc mate-
rials (in spite of current theoretical beliefs) were left open.
Clearly, the d-wave nature of these superconductors might
play an important role here. Finally, in 2005 Zuev et al. [9]
reported a linear relationship between ns and T�

c , where
� ¼ 2:3� 0:4. They pointed out that with the empirical
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proportionality of Tc to �dc (theoretically justified in a
large parameter regime for a classical Josephson-coupled
superconductor [2], see below), a value of � ¼ 2 is within
the experimentally determined range and would make their
result consistent with the one by Homes et al. [7].

These quite universal correlations have caused con-
siderable discussion [12]. For a recent explanation, we
mention the one relying on the vortex glass melting
temperature [13].

Method.—We shall now demonstrate that the various
ns / Tc relations follow in an almost trivial manner for a
classical (no capacitive energies) ordered Josephson array
[3]. We take the simplest model of a two-dimensional (2D)
array of square L� L grains of thickness d in the x-y
plane, made from a superconductor with a critical tem-
perature T0

c . The grains are connected by flat Josephson
junctions with Josephson current amplitudes IJ and
Josephson energies EJ ¼ @IJ=2e. The 2D array can be
regarded as the whole system or as one of the layers in a
3D structure. From now on we mainly consider ‘‘large
grains’’ in the Anderson sense [21]. There, the intragrain
gap is much larger than the single-particle level spacingwL

of the isolated grain. In such ‘‘large’’ grains, bulk super-
conductivity is approximately valid. The Josephson cou-
pling can be written as [22]

EJ ¼ ð�=4Þgn�; (1)

where gn is the intergrain conductance measured in units of
e2=@. We assume, for definiteness, that the size L of each
superconducting unit is � �0, where �0 is the penetration
depth of the grain material. (It is straightforward to get the
result for L � �0 as well). This immediately implies that

L is much smaller than the effective penetration depth of
the array; i.e., all induced fields are neglected. This can be
taken as a model for a granular superconductor as long as
the effects of the capacitances and the intergrain disorder,
which certainly exist in real cases, are not dominant [23].
We now obtain the linear response to a small magnetic

field Bz perpendicular to the array. For �0 � L the field Bz

is uniform over each grain. ~B is derived from a vector

potential ~A ¼ ðBzy; 0; 0Þ. Note that r � ~A ¼ 0 as required
for the London gauge. Thus the London equation takes
the form

js ¼ � nse
2

m�c
A: (2)

The flux enclosed in an L� y rectangle shared equally
by two neighboring grains is BzLy. Due to it, the phase
difference between two superconducting blocks that are
nearest neighbors in the x direction, increases with y in the
manner

�ðyÞ ’ �2eBzyL=@c ¼ �2eLAxðyÞ=@c: (3)

For small B, this leads to a Josephson current density [22]

js;xðyÞ ¼ �2eIJAxðyÞ=@cd: (4)

Equating this Josephson current to the screening current in
the London equation [Eq. (2)], we find the general relation
for a granular superconductor with L � �0 is similar in
form to the result for an array of superconducting weak
links [24]

ns ¼ 4m�

d@2
EJ: (5)

This relation can be written in terms of Tc and the normal-
state conductivity. Different results are obtained in the two
following cases.
A. Large intergrain resistance gn � 1.—Because the

electrons are well localized in the grains, one expects the
normal state of this system to be insulating when extrapo-
lated to T ! 0 [3]. Here, to reach EJ 	 T, one needs to go
to temperatures much lower than T0

c [see Eq. (1)]. At those
temperatures EJ saturates with values of order gn�ð0Þ,
and Tc is given by a constant 	 of order unity times EJ,
Tc ¼ 	EJ. We have used units in which kB ¼ 1 through-
out. Thus, in this case we obtain

ns ¼ 4m�

d@2	
Tc; (6)

which is just the Uemura correlation. Form� ¼ 5m, 	 ¼ 1,

d ¼ 5 �A, and ns ¼ 2� 1021 cm�3, we obtain Tc 
 35 K.
Thus, the coefficient in Eq. (5) agrees within a factor of two
with the Uemura one, for reasonable parameters of the 2D
layer. Equation (5) is just the relation between ns and the
order-parameter phase stiffness for the XY model. In this
limit, there exist two distinct effects, the buildup of the
pairing correlations in the grains, which is a continuous

FIG. 1 (color online). A log-log plot of the superfluid density
�s0 vs �dcTc in the a-b planes for a variety of electron and hole-
doped cuprates. The dashed line corresponds to the general result
for the cuprates �s0 ’ 120�dcTc. The points for Nb and Pb,
indicated by their atomic symbols, also fall close to this line.

PRL 109, 067003 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

10 AUGUST 2012

067003-2



crossover around T0
c , and the intergrain phase locking at

Tc. Were this picture applicable to the underdoped high-Tc

case, T0
c and Tc would correspond to the establishment

of the pseudogap and that of overall superconductivity
respectively.

When the Uemura correlation was first reported, the
proportionality of Tc to the electron density was taken to
indicate the purely electronic origin of high-Tc supercon-
ductivity. Our simple derivation above proves that that
logic is not infallible. The Josephson array can model
any appropriately inhomogeneous superconductor, includ-
ing ordinary low-Tc ones, and it does yield the Uemura
correlation.

B. Small intergrain resistance gn * 1, (including
gn � 1).—Here EJ becomes comparable to T around T0

c ,
which is then approximately equal to Tc. In the high-Tc

case, this would mean that the pseudogap and the super-
conductivity are established at the same temperature,
which is the case for the optimally doped and overdoped
situations. Here we obtain, defining the constant A (ffi 1:75
in the BCS case) via the usual relationship in the grain
material, �ð0Þ ¼ AT0

c :

ns ¼ A�gnm
�

d@2
Tc ¼ A��0

nm
�

@
2

Tc; (7)

which is equivalent to the Homes’ law. Here �0
n is the

normal state conductivity just above Tc, in units of
ðe2=@Þ=cm. It makes sense that the condition gn * 1 is in
fact satisfied for high enough doping. While the square
of the superconducting plasma frequency is defined as
!2

ps ¼ nse
2=ð�m�Þ in units s�2, the quantity that Homes

et al. examine is ð!ps=cÞ2 in units of cm�2; this allows us

to cast the Homes’ law in the following seemingly elegant
way. Using the ‘‘universal’’ constant 
0 � A
 ’ 0:0128,
where 
 � e2=ð@cÞ is the fine structure constant and we
have previously taken A ¼ 1:75

ð!ps=cÞ2 ¼ �
0�0
nTc=ð@cÞ: (8)

The approximate coefficient in the proportionality of the
left-hand side to �0

nTc depends only on the gap-to-Tc ratio
and on natural constants. We note that this result agrees
exactly with the usual ‘‘dirty limit,’’ in which the reduction
of ns is ns ¼ nðvF�=�0Þ. Using the BCS-type relationship
�0 ¼ @vF=½��ð0Þ� yields Eq. (8). Since the dirty-limit
value agrees approximately with the Homes’ law coeffi-
cient [7,8], so should our result [Eq. (8)].

In fact, since e2=@ ’ 1=4100 ��1, �0
n ’ 4100�n, when

�n is measured in ��1cm�1. This yields

ð!ps=cÞ2 ’ 50�nTc=ð@cÞ ’ 235�nTc: (9)

In the last expression on the right-hand side �n and Tc are
in the same units as in the original Homes law paper [7]
(namely, ��1cm�1 and K) [25]. The slope in Eq. (9) is
larger by about a factor of two from the value 120� 25
reported in Ref. [7]. Note that this expression can be

recast as Tc / �s0�dc, where �dc ¼ 1=�n, allowing a
more direct comparison with the Uemura relation. For
the low-Tc cases, the agreement is within about 50 percent.
Taking, as an example, the first Nb sample of Table I
of Ref. [8], we get from the values of �n and Tc,
ð!ps=cÞ2	4:7�108 cm�2, while the value in the table is

	3:1� 108 cm�2. Overall, the agreement of our Eq. (9)
with experiment is within a factor of two. With the gross
simplifications introduced in our naı̈ve model, we regard
this as satisfactory.
Discussion.—Nominally, the high-Tc superconductors

look like they are in the clean limit. This is believed rather
generally and is consistent with the values reported in
Refs. [7,8]. This is not because they are so clean; the
experimental values of kF‘ can be of order 50–100. The
problem is that �0 is small due to the relatively large ratio
Tc=EF (here kF�0 	 10–50). Thus, these materials would
be in the clean limit if they were homogenous. However,
the natural fluctuations in the doping make them inhomo-
geneous, and �0 is not large enough to average that. What
is shown above is that this inhomogeneous system behaves
like a dirty one. (Although, again, it would not be, were it
homogenous.) How the inhomogeneity arises has been
discussed by Alvarez and Dagotto [17] and more recently
by Hoffman [26]; we elaborate on this in Ref. [3] following
the general argument by Ma and one of us [27]. The issue
at hand is to find the size scale where the gain in energy

/ Ld=2 due to fluctuations in the defect concentration or
doping is larger than the energy of the interface created
/ Ld�2. When this scale of L is smaller than the effective
correlation length, the instability and formation of grains
will occur. Clearly, a stronger sensitivity of Tc to the defect
concentration will help in the establishment of the granular
state of matter. As mentioned before, a d-wave character of
the superconductor is very helpful in that respect.
The behavior of the granular model presented is deter-

mined by two conditions, governed by dimensionless
ratios: whether the grains are large or small [depending
on the ratio�ð0Þ=wL] and whether the intergrain resistance
(in units of @=e2) is larger or smaller than unity. The
Uemura correlation is valid only for the large grain, large
resistance case which typically corresponds to the under-
doped region of the phase diagram for the cuprates where a
pseudogap is usually observed [5]; �ð0Þ=wL * 1, gn � 1,
where the insulator and the inhomogeneous Josephson
phase are the relevant phases. In the large grain, small
resistance case (which corresponds to the optimally or
overdoped cuprates where the pseudogap is either strongly
diminished or absent altogether), �ð0Þ=wL * 1, gn � 1,
we showed that the Homes’ law is the relevant correlation.
In the small grain case �ð0Þ=wL < 1 and small resistance
metallic regime gn * 1 (the optimal and overdoped re-
gime), superconductivity is established in an almost homo-
genous, strongly disordered, conductor. Even close to the
metal-insulator transition the mean free path ‘ is of a small
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microscopic size and it makes sense that the superconduc-
tor should be in the dirty limit (‘ � �0). This implies that
the Homes’ law [7,8] (or the one reported by Zuev et al.
[9]) should then yield the valid correlation between ns and
Tc. The small grain case �ð0Þ=wL & 1 with large inter-
grain resistance gn & 1 (and therefore an insulating normal
state) is very interesting since strong intragrain supercon-
ducting correlations do exist [28], but it is not known
exactly what is the effect of the intergrain coupling with
the Coulomb blockade [23].

We have neglected throughout the capacitive, Coulomb-
blockade-type interactions [23]. This is justified in all the
metallic regimes, due to screening. This includes all the
range of the Homes correlations. The capacitive effects
might also play an important role in the large-grain-small-
intergrain-coupling case, where the Uemura correlations
are supposed to hold. Our treatment there is valid only for
grains large enough for the capacitive effects not to be
important.

Only compact regular grains were considered in this
Letter. More general inhomogeneities (e.g., stripes [11],
layers, or more complex geometries) should be treated as
well. The case of high-Tc materials is further complicated
due to the anisotropic gap and correlation length [29]. The
question of when such a superconductor can be regarded as
dirty is beyond the scope of this Letter.

The results presented in this Letter are valid for granular
superconductors and Josephson arrays. They do explain
semiquantitatively the ns � Tc correlations in ordinary and
in high-Tc superconductors. This obviously does not prove
that the latter conform to the naı̈ve model discussed.
However, it might be taken as further evidence that the
inhomogeneities, which do exist [20] in these materials,
play a role in their fascinating physics.

Conclusions.—The examination of the model for a
granular, inhomogeneous superconductor reveals that it
can mimic a dirty-limit material. Scaling relations may
be derived in the two limits of a simple granular supercon-
ductor model. In the large grain, high resistivity case
[�ð0Þ=!L*1, gn�1] Uemura-type Tc/ns (or Tc/�s0)
scaling is expected; however, in the small resistance
case [�ð0Þ=!L * 1, gn � 1] it is demonstrated that the
Tc / �s0�dc scaling described by Homes et al. is expected.
In the small grain, small resistance case [�ð0Þ=!L < 1,
gn � 1], Tc / �s0�dc is again expected. Within the con-
text of the high-temperature superconductors, the high-
resistivity case corresponds to the underdoped (pseudogap)
region of the phase diagram where Uemura-type scaling
is observed while the low-resistivity case corresponds to
the optimally and overdoped region where the pseudogap
is largely absent and Tc / �s0�dc is observed rather than
Tc / �s0.
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