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We propose that real-space properties of the two-impurity Kondo model can be obtained from an

effective spin model where two single-impurity Kondo spin chains are joined via an Ruderman-Kittel-

Kasuya-Yosida (RKKY) interaction between the two impurity spins. We then use a density matrix

renormalization group approach, valid in all ranges of parameters, to study its features using two

complementary quantum-entanglement measures, the negativity and the von Neumann entropy. This

nonperturbative approach enables us to uncover the precise dependence of the spatial extent �K of the

Kondo screening cloud with the Kondo and RKKY couplings. Our results reveal an exponential

suppression of the Kondo temperature TK � 1=�K with the size of the effective impurity spin in the

limit of large ferromagnetic RKKY coupling, a striking display of ‘‘Kondo resonance narrowing’’ in the

two-impurity Kondo model. We also show how the antiferromagnetic RKKY interaction produces an

effective decoupling of the impurities from the bulk already for intermediate strengths of this interaction,

and, furthermore, exhibit how the non-Fermi liquid quantum critical point is signaled in the quantum

entanglement between various parts of the system.

DOI: 10.1103/PhysRevLett.109.066403 PACS numbers: 71.10.Hf, 75.10.Pq, 75.20.Hr, 75.30.Hx

Introduction.—The theory of quantum impurities under-
pins much of the current understanding of correlated elec-
trons. A case in point is the two-impurity Kondo model
(TIKM) [1], with bearing on heavy fermion physics [2],
correlation effects in nanostructures [3], spin-based quan-
tum computing [4,5], and more. The model describes two
localized spin-1=2 impurities in an electron gas, coupled
by the Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-
tion �JI via their spin exchange with the electrons. In
addition to the RKKY coupling the model exhibits a sec-
ond energy scale, the Kondo temperature TK, below which
the electrons may screen the impurity spins. For strong
ferromagnetic RKKYinteraction j JI j� TK the impurities
form a spin-1 state that does get screened, in exact analogy
with the spin-1 two-channel Kondo effect. In contrast, for
strong antiferromagnetic RKKY interaction JI � TK the
impurity spins form a singlet state, killing off the Kondo
effect. In the presence of a special electron-hole symmetry
[6], or with the impurities coupled to separate electron
reservoirs [7], the nonuniversal crossover between the
two regimes sharpens into a quantum phase transition
(QPT) with a non-Fermi liquid quantum critical region.

While much is known about the model, various real-
space properties are yet to be uncovered. A central concept
is the Kondo screening cloud, inferred from the appearance
of a characteristic length �K ¼ @vF=kBTK associated with
the energy scale TK, with vF the Fermi velocity [8]. The
Kondo cloud is invoked to explain how physical quantities

at a distance r turn into scaling functions of r=�K, rather
than depending on r and �K separately [8]. However, its
nature, structure, and experimental confirmation has re-
mained controversial, even for the single-impurity Kondo
model, motivating several recent attempts to determine the
Kondo length �K accurately [9,10]. The case of the TIKM
is further compounded since the Kondo regime changes its
character as one tunes through zero RKKY coupling
(where the model splits into two single-impurity Kondo
models) to strong ferromagnetic RKKY coupling (where
the physics is instead captured by the spin-1 two-channel
Kondo model). What is the signature of this crossover?
How does it show up in real space?
In this Letter we address these questions by exploiting

and making precise the picture that a screening cloud is
built from those electron states that are entangled with the
impurities [9]. This allows us to nonperturbatively uncover
(i) the QPT between Kondo and RKKY regimes, (ii) the
effective impurity-bulk decoupling for antiferromagnetic
RKKY coupling, (iii) the true spatial extent of the Kondo
cloud, and (iv) the effect of ‘‘Kondo resonance narrowing’’
for large ferromagnetic RKKY interaction.
The spin model.—Exploiting the effective one-

dimensionality of the TIKM [11], we introduce its spin
chain emulation by coupling the impurities of two single-
impurity Kondo spin chains [12] by an RKKY interaction
of strength JI, see Fig. 1(a). The speed up of numerics
achieved by working with a ‘‘spin-only’’ version of the

PRL 109, 066403 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

10 AUGUST 2012

0031-9007=12=109(6)=066403(5) 066403-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.066403


TIKM is significant and enables us to extract entanglement
properties via a high-precision density matrix renormaliza-
tion group (DMRG) approach. We thus consider the spin
Hamiltonian H ¼ P

k¼L;RHk þHI where

Hk ¼
X2

j¼1

Jj

�

J0k�
k
1 � �k

jþ1 þ
XNk�j

i¼2

�k
i � �k

iþj

�

HI ¼ JIJ1�
L
1 � �R

1 : (1)

Here k ¼ L, R labels the left and right chains, with �k
i

the vector of Pauli matrices at site i in chain k, and with
J1 (J2) nearest- (next-nearest-) neighbor couplings. Taking
J1 ¼ 1, J2 must be tuned to a critical value Jc2 ¼ 0:2412
in order forHL andHR to each faithfully represent the spin
sector of a single-impurity Kondo model: when J2 > Jc2 the
spin chain enters a gapped dimerized phase, whereas for
J2 < Jc2 a marginal coupling, in the sense of renormaliza-
tion group (RG), produces logarithmic corrections which
pollute numerical data [12,13]. The positive parameters J0L
and J0R play the role of antiferromagnetic Kondo couplings.
HI, finally, is the RKKY interaction between the impurity
spins �L

1 and �R
1 , with JI allowed to take any positive or

negative value. In the DMRG calculations we take NL ¼
NR � N=2 and assume that J0L ¼ J0R � J0.

Structure of entanglement.—For JI ¼ 0, the system
decouples into two independent (‘‘spin-only’’) single-
impurity Kondo models where each impurity is screened
by its own cloud. For nonzero JI, the ground state attains a

more complex structure. To perform a diagnostic we shall
use two well known entanglement measures: negativity
[14] and von Neumann entropy. Recall that for a bipartite
system AB, negativity is defined asN ð�ABÞ ¼ P

ijaij � 1,
where ai denote the eigenvalues of the partial transpose of
the density matrix �AB with respect to one of the two
subsets, i.e., A or B. The von Neumann entropy, in turn,
is given by Sð�AÞ ¼ �Tr�Alog2�A, where �A ¼ TrB�AB is
the reduced density matrix of the subset A when system B
is traced out from �AB. While Sð�AÞ quantifies entangle-
ment only when the total density matrix �AB is pure, there
is no such restriction for the negativity.
Let us first recall that RG studies of the electron-hole

symmetric TIKM have identified the fixed-point
Hamiltonian for small positive JI as that for two indepen-
dent Kondo impurities [2]. However, unlike for indepen-
dent spins the ground state expectation value h�R

1 � �L
1 i is

nonzero [15]. For JI > 2:2TK, no Kondo effect occurs.
Still, Kondo correlations persist in this regime, with the
two impurity spins locking into a singlet only for very large
values of JI. This picture holds also without electron-hole
symmetry when the impurity spins couple to separate
electron reservoirs with no charge transfer [7]. As this is
the case modeled by our Hamiltonian in Eq. (1), we
expect a QPT at some value JI ¼ JcI with JcI scaling with

TK � e��=J0 ,� being a positive constant [15]. To detect the
QPT, we compute the negativity between the impurities as
a function of JI. One may take advantage of the SU(2)
symmetry of the system and write the reduced density
matrix �1L;1R of the two impurities as a Werner state,

�1L;1R ¼ PsjSihSj þ 1� Ps

3

X

i¼0;�1

jTiihTij; (2)

where jSi is the singlet state, jTii (i ¼ 0, � 1) are triplets,
and Ps is the singlet fraction that varies with JI and J0.
The negativity for a Werner state coincides with its con-
currence [16] and can be obtained as N ð1L; 1RÞ ¼
maxf0; 2Ps � 1g. The numerical results are depicted in
Fig. 2(a) where the entanglement rises from zero (Kondo
regime) at a point JcI (which depends on J

0) and eventually
saturates to unity (local RKKY singlet). Moreover, as seen
in Fig. 2(b), the transition point JcI indeed scales exponen-
tially with 1=J0, in agreement with the RG picture from
Ref. [15]. The small finite size correction for small J0,
captured in Fig. 2(b), reflects the fact that in this parameter
regime the extent of Kondo screening cloud approaches the
system size.
By decreasing JI, the singlet fraction Ps decreases

monotonically and approaches zero in the limit of large
negative JI. It follows that in this limit the two impurity
spins effectively behave as a single spin-1 entity, with the
two bulks serving as two screening channels. To see this
effect one may calculate the von Neumann entropy of
�1L;1R ,

FIG. 1 (color online). (a) The composite system of two Kondo
spin chains, each formed by an impurity and a bulk, and coupled
together by an RKKY interaction�JI to represent a ‘‘spin-only’’
TIKM. (b) The symmetric central block which containsM spins,
including impurities. (c) The effective model in which the two
impurities are decoupled and instead the bulks are interacting
through Heff

I , given in Eq. (4). (d) Two identical blocks of spins
are traced out from the bulks and entanglement between the two
impurities and the rest of the system is computed to find the
Kondo length.
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Sð�1L;1RÞ ¼ �Pslog2ðPsÞ � ð1� PsÞlog2
�
1 � Ps

3

�

: (3)

As the ground state of the whole system is a pure state, this
quantifies the entanglement between the two impurities
and the rest of the system. In Fig. 3(a) we plot Sð�1L;1RÞ
as a function of JI which clearly implies the limiting
behavior �log2ð3Þ (corresponding to Ps ¼ 0) for JI � 0.
It is interesting to contrast the Kondo screening behavior
for JI < 0 with that for JI > 0. For JI ¼ 0 each impurity is
maximally entangled with its neighboring chain indepen-
dent of the value of J0. By additivity of the von Neumann
entropy it follows that Sð�1L;1R Þ ¼ 2, as seen also in the

DMRG data in Fig. 3(a). Returning to Eq. (2), note that Ps

determines the effective impurity spin as a function of JI:
For Ps ¼ 0 (i.e., JI � 0) the two impurities behave like a
single spin-1 object while for Ps ¼ 1=4 (i.e., JI ¼ 0) the
two impurities are decoupled and each, carrying spin 1=2,
gets screened by its own cloud. In the limit JI � 0we have
that Ps ¼ 1, and the two impurities form a singlet.

It is also instructive to study the entanglement between
different constituents of the system. In Fig. 3(b) we display

the negativity N ð1L; BLÞ between the left impurity and
the left bulk [by symmetry we have N ð1L; BLÞ ¼
N ð1R; BRÞ]. As jJIj increases, N ð1L; BLÞ drops rapidly
for JI > 0 as one tunes through the QPT where the Kondo
screening becomes feeble. In contrast, for JI < 0 the de-
crease of N ð1L; BLÞ is slower and approaches a finite
value in the limit where the impurity states form a spin-1
state. However, since the left (as well as the right) impurity
is now less screened by its own bulk, entanglement mo-
nogamy [17] implies that it is entangled also with the
opposite bulk, as revealed by Fig. 3(c). To display the
entanglement between the two bulks for finite JI we plot
the negativityN ðBL; BRÞ between the left and right chains
in Fig. 3(d), having traced out the impurity states. As
Fig. 3(d) shows, N ðBL; BRÞ is no longer bounded by
unity, reflecting the fact that the bulk contains many spins.
Furthermore, due to entanglement monogamy,N ðBL; BRÞ
is larger for JI > 0 for which the two impurities tend to
decouple from the rest by forming a singlet, in comparison
to JI < 0 for which the two impurities are entangled with
the bulks, thus reducing their ability to get entangled with
each other.
Quantum phase transition.—To corroborate that JcI is a

quantum critical point, we plot the first derivative of the
negativities N ð1L; BLÞ, N ð1L; BRÞ, and N ðBL; BRÞ in
Figs. 4(a)–4(c) for two cases, i.e., N ¼ 240 and N ¼ 400.
The cusps at JcI , which become increasingly sharper for
larger N, are finite-size precursors of a divergence in the
thermodynamic limit, a hallmark of a second-order QPT
[18]. The data in Figs. 4(a)–4(c), together with Fig. 2(b),
provide a highly nontrivial check that our spin chain model
is a faithful (‘‘spin-only’’) emulation of the TIKM.
Effective decoupling of impurities.—To dissect the

RKKY regime JI > JcI we take a central block of M spins
which contains both impurities [see Fig. 1(b)] and compute
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its von Neumann entropy Sð�ðMÞÞ. Deep in the RKKY
regime JI � JcI the two impurities form a singlet and their
quantum state becomes pure and decouple from the rest.
This can be modeled by having two decoupled impurities
in a singlet state together with an effective system of length
N � 2 formed by the left and right bulks as shown in
Fig. 1(c). The effective interaction Heff

I between the two
bulks can be determined by a Schrieffer-Wolff transforma-
tion [19] with the result that

Heff
I ¼ J02J1

2JI
�L

2 :�
R
2 þ J02J22

2JIJ1
�L

3 :�
R
3

þ J02J2
2JI

ð�L
2 :�

L
3 þ �R

2 :�
R
3 � �L

3 :�
R
2 � �L

2 :�
R
3 Þ; (4)

where we have included also the modified boundary inter-
action within each chain. Having effectively removed the
impurities, the central block can now be considered as that
ofM� 2 sites with density matrix �effðM� 2Þ. Given this
effective model one can compare the von Neumann en-
tropy of the central block, i.e., Sð�effðM � 2ÞÞ, with the
one from the original system, i.e., Sð�ðMÞÞ, and only for
JI � JcI do we expect that the two entropies coincide for
allM> 2. As a test we introduce an error parameter E that
quantifies the average difference between the von
Neumann entropy of the central block for the original
and effective chain,

E ðJ0; JIÞ ¼ 1

N � 4

XN

M¼4

jSð�ðMÞÞ� Sð�effðM� 2ÞÞj: (6)

In Fig. 4(d) we plot E as a function of JI for J0 ¼ 0:4.
Surprisingly, as revealed by the exponential decay of E, the
impurities decouple from the bulk already for intermediate
values of JI.

Kondo screening cloud.—We shall finally address the
important issue of the size of the Kondo screening cloud.
Following Ref. [9] we first trace out two identical blocks of
spins, one from each bulk as shown in Fig. 1(d), and then
compute the negativity between the impurities and the rest
of the system. The negativity is found to decay exponen-
tially with the number of spins which are traced out. We
take the length beyond which the negativity is less than a
threshold value, here chosen as 0.01, to define the Kondo
length [20], and plot it as a function of JI in Fig. 5(a). As
seen in the figure, �K increases as one tunes JI from 0
(with two independent single-impurity Kondo clouds) to
large negative values (where the cloud is that of an exactly
screened two-channel spin-1 Kondo model). Interestingly,
�K increases with small positive values of JI and takes a
small maximum at JcI . This indicates that the QPT is
signaled also in the Kondo screening length at finite system
sizes.

We have also investigated the scaling of the Kondo
length �K as a function of the Kondo coupling J0 for
different values of JI < 0. In Fig. 5(b) �K is plotted as a

function of 1=J0 in a semilogarithmic scale. As �K ap-
proaches the total length of the system (N ¼ 400) the
curves for negative JI start bending, indicating that the
deviation from linearity is a finite-size effect. One thus

infers from Fig. 5(b) an exponential dependence �K �
e�=J

0
in the large-volume limit, with � depending on JI.

Some values of � are shown in Table I. Extrapolation to
large negative values of JI suggests that �ð�1Þ �
2:5�ð0Þ, which is compatible with the results of the analy-
sis carried out in Ref. [21]. With the Kondo temperature TK

related to �K by TK ¼ @v=kB�K [22], our entanglement
probe of the Kondo cloud thus shows an exponential
suppression of the Kondo temperature with the size of
the effective impurity spin (i.e., spin-1 rather than
spin-1=2). This phenomenon, known as Kondo resonance
narrowing [21], was implicitly touched upon in the original
work on the TIKM [1]. While the problem has been
revisited recently in the context of the two-orbital
Anderson model [23] and for magnetic ions with large
Hund’s coupling [21], ours is the first display of the effect
extracted from quantum entanglement.
Conclusion.—We have introduced a spin-chain model

representing the TIKM and investigated its properties by
applying two complementary entanglement measures bor-
rowed from quantum information theory, negativity and
von Neumann entropy. This novel approach is conceptu-
ally simple and can easily be implemented numerically via
a DMRG code. As we have shown in this Letter, it enables
one to faithfully recover highly nontrivial features of the
TIKM, including the existence of a QPTat a critical RKKY
coupling [2]. Importantly, it makes possible, for the first
time, a precise probe of how the elusive Kondo cloud
depends on the Kondo and RKKY couplings, strikingly
showing the effect of Kondo resonance narrowing within a
controlled nonperturbative formalism. We expect that our
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FIG. 5 (color online). (a) Kondo length vs JI. (b) Scaling of �K

vs 1=J0 for different JI’s. In both figures NL ¼ NR ¼ 200.

TABLE I. The values of � for different JI’s in a chain of
NL ¼ NR ¼ 200.

JI �3:00 �2:50 �2:00 �1:50 �1:00 �0:50 0.00

�ðJIÞ 4.1939 3.9976 3.8861 3.1598 2.6330 2.1262 1.7753
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approach can be exploited for generic quantum impurity
problems and that it will prove increasingly useful with
future applications.

Discussions with A. Ferraz, A. Hamma, N. Laflorencie,
D. Schuricht, and I. A. Shelykh are gratefully acknowl-
edged. This work was supported by the Alexander von
Humboldt Foundation and the EU STREPs CORNER,
HIP and PICC (AB), Royal Society and the Wolfson
Foundation (SB), and the Swedish Research Council (HJ).

[1] C. Jayprakash, H. R. Krishna-murthy, and J.W. Wilkins,
Phys. Rev. Lett. 47, 737 (1981).

[2] B. A. Jones, C.M. Varma, and J.W. Wilkins, Phys. Rev.
Lett. 61, 125 (1988).

[3] J. Bork, Y.-h. Zhang, L. Diekhöner, L. Borda, P. Simon, J.
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