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Topological phases of quantum matter defy characterization by conventional order parameters but can

exhibit a quantized electromagnetic response and/or protected surface states. We examine such phe-

nomena in a model for three-dimensional correlated complex oxides, the pyrochlore iridates. The model

realizes interacting topological insulators, with and without time-reversal symmetry, and topological Weyl

semimetals. We use cellular dynamical mean-field theory, a method that incorporates quantum many-body

effects and allows us to evaluate the magnetoelectric topological response coefficient in correlated

systems. This invariant is used to unravel the presence of an interacting axion insulator absent within a

simple mean-field study. We corroborate our bulk results by studying the evolution of the topological

boundary states in the presence of interactions. Consequences for experiments and for the search for

correlated materials with symmetry-protected topological order are given.
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The interplay of symmetry and topology has recently
proven a rich avenue for the discovery of new phases of
matter, some of which have been experimentally identified.
A recent example is the prediction and subsequent obser-
vation of topological insulators (TIs) preserving time-
reversal symmetry (TRS) [1,2]. The symmetry-protected
topological orders in such phases cannot be fully charac-
terized by conventional order parameters. They can, how-
ever, display a universal electromagnetic response and/or
robust boundary states. This follows from the presence of
nontrivial quantum entanglement in the ground state of
these phases [3]. In TRS-protected topological band insu-
lators, such order can be characterized by a topological
invariant in terms of the single-particle wave function [1].
This approach cannot be applied in the presence of inter-
actions. Rather, one can ask if the correlated material
exhibits a universal and quantized physical response to a
given external perturbation. For three-dimensional (3D)
TIs, the quantized response is the magnetoelectric effect
[4], according to which an externally applied electric field
on the sample generates a parallel magnetic field, and vice
versa, with the response coefficient depending solely on
universal constants. It was argued on the grounds of topo-
logical field theory that the magnetoelectric effect remains
a well-defined topological response in the presence of
interactions [5]. Moreover, a topological index was given
in terms of the full interacting electronic Green’s function.
As some of the considerations in the establishment of such
an invariant are rather abstract, it would be desirable to
have a concrete verification of such an important claim.

We calculate this topological invariant within a strongly
correlated electronic Hamiltonian by means of cellular
dynamical mean-field theory (CDMFT) [6,7], which gives

access to the Green’s function of the interacting electrons.
This index allows us to determine the presence of corre-
lated topological insulators, with and without TRS (here,
the latter case corresponds to an axion insulator), and their
breakdown for sufficiently large correlations.
A complementary aspect of the quantized magnetoelec-

tric effect is the presence of protected surface states, which
we verify by analyzing our interacting model in a finite-
slab geometry. We do find that the TI surface states are
robust to interactions, thus establishing the bulk-boundary
connection for an interacting system and providing a check
for the nontrivial topological index. Further, the surface
state analysis allows us to study correlation effects on a
closely related gapless phase: the topological Weyl semi-
metal, which has Weyl-fermion excitations and nontrivial
surface states [8–11].
We use a model relevant to a class of 3D complex

oxides, the pyrochlore iridates [8,12–15]. These materials,
and closely related iridium-based compounds, are cur-
rently under close experimental scrutiny due to recent
proposals for topological phases [8,12–16]. As correlations
seem important in these d-electron compounds, our work
can be instrumental in their analysis. However, we empha-
size that, as we are dealing with topological phases, many
of our results are expected to hold in general. Indeed, we
envision that our methods can be fruitfully used in the
analysis of correlated symmetry-protected topological or-
dered states and combined with ab initio tools in the quest
for experimentally relevant candidate materials [17].
Model.—The pyrochlore iridates, R2Ir2O7, are 3D com-

plex oxides where R is yttrium or a rare earth. In many
instances, R is nonmagnetic and the physics is mainly
dictated by iridium’s (Ir) 5d electrons. Due to the larger
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extent of the 5d atomic orbitals (compared with 3d), the
energy scales associated with spin-orbit coupling and local
repulsion are comparable. This sets the stage for the inter-
play between band topology and Mott physics. A micro-
scopically tailored model that captures this interplay is the
following Hubbard Hamiltonian for the 5d electrons hop-
ping on the iridium pyrochlore lattice with on site Coulomb
repulsion [15]:

H ¼ X

hRi;R0i0i;��0
ð½Toxy�ii0��0 þ ½Td�ii0��0 ÞcyRi�cR0i0�0

��
X

Ri;�

cyRi�cRi� þU
X

Ri

nRi"nRi#; (1)

where cRi� annihilates an electron with pseudospin � at
the ith basis site of the Bravais lattice vectorR. The index i
runs from 1 to 4 and labels the corners of a tetrahedron. The
hopping matrix Toxy arises from oxygen-mediated hopping

between the Ir atoms [12] with amplitude t, while Td arises
from the Ir-Ir hopping due to the direct overlap between the
extended 5d orbitals. The latter depends on two energy
scales, t� and t�, arising from the � and � bonding
between the orbitals, respectively. The chemical potential,
�, is such that each Ir atom contributes a single
pseudospin-1=2 electron. The pseudospin arises from the
combined effect of crystal fields and spin-orbit coupling
[18]. Finally, the Hubbard repulsion U generates correla-
tions by penalizing double occupation and thus drives the
system away from simple single-particle physics. (We shall
use the oxygen-mediated hopping amplitude, t, as our
comparison scale.)

The phase diagram of the above Hamiltonian was pre-
viously analyzed by treating the on site repulsion within a
mean-field Hartree-Fock (HF) approach [15], which allows
for a single-particle description. It was found that, for small
U=t, one obtains a topological insulator and metallic
phases, depending on the ratios t�=t and t�=t. At suffi-
ciently large U, the systems become magnetic. Near the
magnetic transitions, it was found that topological Weyl
semimetals (TWS) arise. Here, we shall focus on a repre-
sentative set of hopping parameters: t�=t ¼ 1, with the
ratio t�=t� ¼ �2=3 fixed. In that case, the HF mean-field
theory predicts that the system undergoes successive tran-
sitions from a TI to a TWS, and to an antiferromagnetic
insulator (AFI) as one increases U. It is worth noting that
the same succession of phases can be found within the HF
framework for t�=t <�1:67, and we thus expect that the
results we present below can be applied there as well. A
detailed study of the full phase diagram is left for future
work.

We use the above model to examine the fate of these
phases and transitions within CDMFT. This method has
been widely used to investigate correlated microscopic
models [7] but only recently was it applied to topological
phases [19], specializing to two dimensions. We emphasize

that CDMFT fully incorporates the quantum many-body
effects within a cluster (unit cell here).
The phase diagram together with the magnetization and

topological index are shown in Fig. 1. After the magneti-
zation jumps, a topological Weyl semimetal emerges, as
we establish from the spectral properties of the surface
(Fig. 2) and bulk (Fig. 3) states. The Z2 index, �, deter-
mines the presence of a quantized magnetoelectric re-
sponse. Specifically, � ¼ 1 implies that an applied
electric field E will induce a magnetization in a properly
prepared system: M ¼ �E, where � ¼ e2=2h depends
only on universal constants [4]. In the presence of TRS,
this topological response can be used as a defining property
of a correlated TI. The associated Z2 topological index can
be computed from the full interacting Green’s function by a
Wess-Zumino-Witten-like integral [5]. It has been shown
recently that, in the special case where inversion symmetry
is present, as is the case in this work, one can use a
simplified criterion [20]:

ð�1Þ� ¼ Y

R-zero
�1=2
� ; (2)

where �� ¼ �1 is a parity eigenvalue corresponding to a
vector j�i, an eigenstate of the interacting Green’s function
evaluated at one of eight special momenta, �i. These are
the time-reversal invariant momenta satisfying ��i ¼ �i,
up to a reciprocal lattice vector. Equation (2) is in contrast
with the analogous Fu-Kane formula which can only be
used for noninteracting systems. More details about �,
such as the definition of ‘‘R-zero’’ (which reduces to that
of an occupied band in the noninteracting limit), can be
found in the Supplemental Material [21] and in Ref. [20].
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FIG. 1 (color online). Magnetization (m) and topological index
(�) versus interaction strength. An interaction-driven topologi-
cal transition accompanies an abrupt change of the magnetiza-
tion. In the intermediate region, a topologically nontrivial
insulator with a finite magnetization indicates the realization
of an interacting axion insulator (AI). As the interaction strength
increases, a TWS appears after the magnetization jump. At large
U, the system is a topologically trivial AFI. The magnetic
structure is illustrated in the inset.
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From Fig. 1, we can see that the invariant indicates the
presence of a topologically nontrivial phase for a wide
range of on site repulsion until a trivial phase results in
the magnetic antiferromagnet, found at large U. It can be
noted that the topological index remains invariant irrespec-
tive of the evolution of the Green’s function due to inter-
actions, which can be seen from the broadening of the
spectral function, for instance. Eventually, TRS is broken,
and there is a quantum phase transition out of the TI. From

Fig. 1, we note that there is a regime where the magneti-
zation increases continuously from zero before jumping
discontinuously at U=t ¼ 6:11. The latter jump, where
the order parameter has a sudden increase although TRS
has already been broken, signals a first order transition.
We have verified that it is a robust property within our
framework. Figure 1 shows that the range where the
magnetization increases continuously from zero has
� ¼ 1. Because of the breaking of TRS, one cannot iden-
tify this as a TI in the above sense. Rather, it is a closely
related phase: a correlated axion insulator. It was intro-
duced at the noninteracting level by Refs. [8,22], where it
was noted that, even in the absence of TRS, by virtue of
inversion symmetry and a special structure of the parity
eigenvalues, the topological magnetoelectric effect dis-
cussed above could be realized. Contrary to the TI, this
phase does not have protected boundary states. As we
argue in the Supplemental Material [21], the � invariant,
Eq. (2), is a natural generalization of the one introduced in
Refs. [22,23], as it counts the total number of odd-parity
eigenstates, not only one per Kramers pair. We add that one
expects such a phase to be present if the magnetization
increases continuously from a TI, because the parity struc-
ture is not expected to change dramatically. Finally, as the
continuous transition preceding the first order one is a
feature that is absent from the HF mean-field theory, this
axion phase is fundamentally correlation driven.
Surface states.—Another route to examining the non-

trivial topology of the ground state is via the bulk-boundary
correspondence which, at the noninteracting level, guaran-
tees the existence of protected surface states on any
boundary with a trivial insulator, such as the vacuum. We
verify this correspondence at the interacting level by per-
forming a real space CDMFT calculation [19] on a slab
that is finite along one direction. We solve for the layer-
dependent Green’s function self-consistently. The
Supplemental Material [21] contains details regarding the
slab calculation.
The spectral function plotted in Fig. 2(c) shows that the

topological surface states persist as correlations are in-
creased, the latter leading to spectral broadening and to
the appearance of high energy states. Eventually, the slab
system undergoes a first order transition to a TWS. At large
U, we have an AFI without any spectral weight in the gap
coming from the boundaries. Note that the axion insulating
phase presented in the above discussion for the bulk
Hamiltonian is absent for the slab, as there is no continuous
rise of the magnetization. We attribute this to the finiteness
of the system in one direction and expect the continuous
transition to be recovered as one introduces more layers.
Correlated topological Weyl semimetal.—After the mag-

netization jump in Fig. 1, the spectral gap closes and one
obtains a region of TWS before the AFI at large U. The
topological Weyl semimetal, as introduced at the noninter-
acting level [8], is a gapless state with a Fermi surface

FIG. 2 (color online). Surface states of a slab normal to (110).
(a) First BZ of a pyrochlore lattice and its projection onto the
(110)-surface BZ. (b) Spectral weight at the Fermi level, ! ¼ 0,
for the TWS with U=t ¼ 4:7. Fermi arcs crossing ky ¼ 0 clearly

appear. The position of the arcs is roughly consistent with the HF
result, denoted by lines in the middle of the arc features.
(c) Density plot of the surface spectral functions along lines
connecting high symmetry points. From left to right, the panels
represent a TI, a TWS, and an AFI. The inset shows more clearly
the surface states of the TWS near the Fermi level, ! ¼ 0.

FIG. 3 (color online). Spectral weights along high symmetry
lines and local density of states for different values of U=t. The
panels represent a TI, a TWS, and an AFI. These last two phases
break TRS. In the TWS, the Weyl points are not along high
symmetry lines, but the density of states shows a quadratic
scaling indicating their presence, as shown by the arrow.
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consisting of (Weyl) points around which the dispersion is
linear. These points are topologically robust, as no local
perturbation can gap them, as long as two Weyl points of
opposite chirality do not mix. The protection of the Weyl
node comes from the fact that only two bands meet at a
point in three dimensions: all Pauli matrices have been
used in the Hamiltonian of the Weyl point, and an addi-
tional perturbation can only move the touching in the
Brillouin zone (BZ). A fingerprint of the singular disper-
sion of the TWS is that it harbors protected surface states
which take the form of Fermi arcs in the surface BZ [8].

At the level of the bulk calculation, we have determined
that the spectral gap closes and the density of states shows
a quadratic vanishing at the Fermi level (! ¼ 0), cf. Fig. 3,
as is expected from linearly dispersing fermions in 3D. The
eight Weyl points are not along high symmetry directions;
hence, Fig. 3 does not show those states of interest. A
decisive signature of the correlated Weyl phase comes
from the surface state calculation. We again consider a
slab with surfaces normal to the (110) direction. We find
clear Fermi arcs arising from states localized on the sur-
faces, as we show in Fig. 2(b). The arcs are broadened
compared to the sharp lines found at the noninteracting
level. From the noninteracting theory, we know that the
arcs should join the projected bulk Weyl points on the
surface BZ. Moreover, if for a given surface two Weyl
points of opposite chirality are projected onto each other,
no Fermi arc should arise from that point. In Fig. 2(b), only
two arcs can be seen for two reasons: first, the arcs coming
from the top and bottom surfaces overlap too much to be
distinguished; second, two pairs of opposite chirality are
annihilated upon projection. We thus establish that the rule
for the projection holds in the correlated phase; i.e., the
notion of chirality for the quasiparticles persists.

Discussion.—We have so far mainly focused on theoreti-
cal studies of correlation effects on topological phases such
as topological insulators and Weyl semimetals. Indeed, we
have established the robustness of TIs from both sides of the
bulk-boundary duality. A bulk topological invariant defined
in terms of interacting Green’s functions was explicitly
evaluated. We determined its change at a correlation-driven
topological transition to a trivial antiferromagnetic insula-
tor. This invariant was used to predict the existence of a
correlated axion phase at the onset of a continuousmagnetic
transition. From the boundary perspective, our work has
shown that the surface states of both TIs and topological
Weyl semimetals remain robust to interactions.

We now turn to the experimental considerations. The
model we used is applicable to a large class of complex
oxides, the pyrochlore iridates. These show metal-insulator
transitions as the rare earth is changed [24] or pressure [25]
is applied. There are indications that some members of the
family magnetically order at low temperatures [26–30].
However, it is still not clear what the nature of the ordering
is, if any. Diverse ground states can be realized as a result of

the effects of chemical and physical pressure on the
electronic structure. As correlations can play an important
role in the determination of these ground states, it is im-
portant to understand their precise effect. Our work goes
beyond the noninteracting and mean-field studies done
previously and establishes not only the presence but also
the stability of various topological phases and magnetic
orders with the inclusion of strong correlations. Moreover,
we predict that the axion insulator can in principle be
realized due to the presence of a correlation-driven second
order transition preceding a first order one. In this phase, the
surface states are gapped and the magnetoelectric effect
exists even though the bulk is magnetically ordered.
Generally, for both TI and axion phases, this suggests that
a quantized magnetoelectric response can be measured (by
Kerr rotation, for example [2]) even if other probes, such as
optical conductivity or photoemission, point to the absence
of sharp quasiparticles. It will be interesting to see if such
indications for correlated topological phases can be found
in the iridates or other materials. The methods used in our
work, CDMFT (bulk and real space) and topological re-
sponse theory via Green’s functions, can be used for a wide
class of complex oxides, not only those mentioned above.
We suggest that these tools can be applied to examine
generic interacting states with symmetry-protected topo-
logical order and combined with ab initio tools in the quest
for experimentally relevant candidate materials.
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