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(Received 30 March 2012; revised manuscript received 16 June 2012; published 10 August 2012)

Capillarity always favors drop fusion. Nevertheless, sessile drops from different but completely

miscible liquids often do not fuse instantaneously upon contact. Rather, intermediate noncoalescence is

observed. Two separate drop bodies, connected by a thin liquid neck, move over the substrate. Supported

by new experimental data, a thin film hydrodynamic analysis of this state is presented. Presumably

advective and diffusive volume fluxes in the neck region establish a localized and temporarily stable

surface tension gradient. This induces a local surface (Marangoni) flow that stabilizes a traveling wave,

i.e., the observed moving twin drop configuration. The theoretical predictions are in excellent agreement

with the experimental findings.
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Introduction.—Basic physics tells us that two sessile
drops will coalesce after contact because of the reduced
interfacial energy for a single drop. This instantaneous
coalescence has been studied for identical liquids [1,2].
Yet, little is known about the fusion of drops with different
but completely miscible liquids, which can be fundamen-
tally different [3–5]: Fusion can be delayed for a long time.
After contact, the drops remain separated in a temporary
state of noncoalescence, connected only through a thin
liquid bridge. This ‘‘twin drop configuration’’ moves
over the surface (Fig. 1). Presumably, a Marangoni flow
resulting from the surface energy difference of the two
liquids causes the noncoalescence [3,4]. An adequate
hydrodynamic explanation is still missing. Especially, it
is still unclear how a temporarily stationary Marangoni
flow forms, stabilizes the noncoalescence, and moves the
twin drops.

We present new experimental data and the first analyti-
cal hydrodynamic explanation, showing that moving twin
drops are a special case of temporarily stationary, self-
stabilizing, thin film waves driven by local surface tension
gradients. The interaction of drops of different composi-
tion is relevant in microfluidics [6,7], and especially so for
surface cleaning (‘‘Marangoni drying’’ [8]).

Experimental results.—Figure 1 shows (see [4] for
experimental details) (a) schematically, the experimental
setup; (b) the neck in detail: capillarity fills the neck from
both sides, whereas Marangoni sucks out liquid asym-
metrically, thus moving the drops with vN and pre-
venting coalescence (see Supplemental Material [9]);
(c) noncoalescence [10]; and (d) drops from identical
liquids fusing instantaneously upon contact. With suffi-
ciently different surface tensions (c), the drops do not
fuse. The main drop bodies [h00ðxÞ< 0] stay separated in
a temporary state of noncoalescence, connected by a thin
liquid neck [h00ðxÞ � 0] . The noncoalescing twin drops
move over the substrate with constant velocity, almost

independent from �� (Fig. 2). Through the neck, small
amounts of liquid flow from drop 2 (lower surface tension,
�2) to drop 1 (�1 >�2), slowly reducing the surface
energy difference �� ¼ �1 � �2. Eventually, the drops
merge (delayed up to minutes [4]).
Flow patterns were investigated by imaging dispersed

fluorescent polystyrene microspheres (Duke Scientific,
d ¼ 1 �m, mass fraction � 2:4� 10�7). Figure 3 shows
their traces in the neck region (see Supplemental Material
[9]). In the substrate frame, all microspheres move from
left to right. At or near the liquid-air interface of drop 2, the
spheres move with � 3

2vN (positions 1 and 2). Close to

the neck, they touch the substrate (d � neck height h) and
slow down (position 3). On the other side of the neck, in
drop 1, those spheres that were at rest close to the substrate
(position 4) get uplifted by the liquid flow through the
neck. Spheres at the liquid-air interface of drop 1 can reach
up to � 2vN (position 5). While moving away from the
neck region, their speed slows down to� 3

2vN (position 6).
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FIG. 1 (color online). (a) Schematics of the experimental
setup or procedure; (b) flow scheme of the neck region;
(c) noncoalescent twin drop movement (different, miscible
liquids); (d) instantaneous coalescence (identical liquids).
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As discussed below, the speed component in addition
to 3

2vN is caused by the local Marangoni flow.

Hydrodynamic model.—The steady-state twin drop
movement is analyzed by assuming a viscous, laminar
Newtonian flow (no slip, no gravity, lubrication approxi-
mation). The two drops are approximated by cross sec-
tions through two infinitely long cylinders, connected by a
thin neck, moving with constant speed and stationary
shape. They consist of miscible liquids with different
surface tensions. The liquid with the lower surface tension
continuously flows through the neck into drop 1. Diffusive-
advective mixing establishes a local stationary composi-
tion profile because the volume exchange per time is small
compared to the overall drop volumes. The composition
profile causes a local surface tension gradient on drop 1
close to the neck (for a detailed qualitative description
of how the Marangoni flow resulting from this gradient

stabilizes stationary noncoalescence, see Supplemental
Material [9]).
The (stationary) surface topology hðxÞ of a liquid film

with surface tension �ðxÞ, moving on a solid support with
capillary number Ca ¼ �vN=�, is described by the bal-
ance between changes of the surface curvature, viscous
dissipation, and surface energy gradients [11]:

h000 ¼ 3Ca=h2 � 3�0=ð2h�Þ: (1)

Without the Marangoni term (�0 ¼ 0), Eq. (1) cannot
describe a stationary twin-drop profile, because h000 > 0
allows only one inflection point (one drop connected
to a neck). However, with �0 � 0, a second inflection
point, i.e., a second drop, can exist, because h000 may
change sign.
The velocity field uðzÞ within the film is [11]

u ¼ z=�½�0 � ðz=2� hÞ�h000�: (2)

Equations (1) and (2) yield the surface flow velocity (z ¼ h)

us ¼ ujz¼h ¼ 3vN=2þ h�0=ð4�Þ: (3)

The Marangoni component increases us, and by sucking
liquid out of the neck region, it favors noncoalescence.
This explains the experimental results (Fig. 3). For

drop 2, the maximum (surface-)velocity is � 3
2vN (i.e., no

surface tension gradient). However, at the surface of drop
1, close to the neck, us >

3
2vN; i.e., �

0 � 0. Liquid 2 flows

through the neck, causing a localized gradient next to the
neck ( � 0:2 mm, drop sizes >mm).
Localized surface tension gradient.—Marangoni forces

cause the flow through the neck: they ‘‘pull’’ liquid 2 as a
thin film onto drop 1 where it mixes with liquid 1. This is
approximated by a layer of liquid 2 with thickness hN
spreading onto drop 1 with a velocity 3

2vN [12], where it

is diluted by diffusion. Compared to the influx of liquid 2,
drop 1 is a large reservoir of liquid 1. Therefore, the
dilution is approximately stationary.
With negligible diffusion in flow direction, this is de-

scribed by the stationary advection-diffusion equation. In
the (moving) contour frame, the advection velocity is vN=2:

D
@2c

@z2
¼ vN

2

@c

@x
; (4)

with D ¼ diffusivity and local compositions c 2 ½0; 1�
from pure liquid 1 to pure liquid 2, respectively; cjx¼0 ¼
1 for 0< z < 2hN and 0 elsewhere (2h assures
@c=@zjz¼hN ¼ 0, i.e., nonvolatile liquids); �ðxÞ shall de-

pend locally on cðx; zÞ with �ðxÞ ¼ �2 þ��cðx; hÞ. Then,
the solution to Eq. (4) yields

�0 ¼ ��

2hN

ffiffiffiffiffiffiffi
Bo

2�

s
ðx=hNÞ�3=2 exp

�
�Bo

8
x=hN

�
: (5)

With Bodenstein number Bo ¼ vNhN=D (a Péclet
number with advection and diffusion orthogonal); �0

max is

FIG. 2. Neck displacement velocity vN versus surface energy
difference ��=�2 (the inset demonstrates the constancy of vN).
Dashed lines: Analytically calculated vN (see also Fig. 5), in
quantitative agreement with experiments.
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FIG. 3. Flow velocities (substrate frame) of individual micro-
spheres as a function of their distance to the neck (moving twin
drops, open circles: upstream, drop 2; closed circles: down-
stream, drop 1). Dashed line: Measured neck velocity vN .
Speeds exceeding 3

2vN indicate a (local) surface tension gradient.
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at xmax ¼ BohN=12, with �xFWHM � 0:225BohN (Fig. 4).
With typical experimental parameters (vN � 1 mm=s,
hN � 10 �m, D � 10�10 m2=s), �0 is � 0 only close to
the neck (xmax � 0:08 mm, �xFWHM � 0:2 mm). This and
the typical experimental values of �� & 0:1�2 justifies
assuming �ðxÞ � �2 whenever �ðxÞ is used explicitly.

Inserting Eq. (5) and (1) is solved numerically. The
result (Fig. 4, solid red lines) matches the experimental
findings (explicitly shown in [4,5]). It reveals moving twin
drops driven by a surface tension gradient. The contours
for drop 2 as well as for the main body of drop 1 are
described by Eq. (1) with �0 ¼ 0. This, together with the
surface tension gradient localized to the neck section, is
the key to the following analysis, which relates vN to
measurable quantities.

Analytical approach.—With �0 � 0 limited to the neck
region of drop 1, the drop bodies themselves can be de-
scribed by Eq. (1) with �0 ¼ 0. Analytic solutions describ-
ing a (single) drop contour can be parametrized around a
local extremum (s ¼ s2, x ¼ 0, and h ¼ hN; see Fig. 4,
dashed lines) [13–15]:

x�0¼0ðsÞ ¼ hN½AiðsÞBiðs2Þ � Aiðs2ÞBiðsÞ�
ð3Ca=2Þ1=3ps2ðsÞ

; (6)

h�0¼0ðsÞ ¼ hN=½�ps2ðsÞ�2; (7)

with ps2ðsÞ ¼ AiðsÞBi0ðs2Þ � Ai0ðs2ÞBiðsÞ. For s2 2
½�1:01879; 0�, Eqs. (6) and (7) show a local minimum
at s ¼ s2. The position of the receding contact line is

xr ¼ hNð32 CaÞ�1=3Aiðs2Þ=Ai0ðs2Þ. On the right, at x ¼ 0,

the drop contour is connected through a neck (height hN)
to an infinite liquid volume: the contour diverges at x > 0.

At the branch limit s ¼ sð1Þ � �1:732þ 0:595s2 (see,
e.g., [14] for details), both x�0¼0 ! 1 and h�0¼0 ! 1.

We assume that Eqs. (6) and (7) for x < 0 individually
describe the main bodies of drop 2 and drop 1, respectively.
To compose the twin drop contour from these, we sup-
pose that the contour of drop 2 is modified at x > 0 (i.e.,
to the right of the neck in Fig. 4) by the local gradient �0
[see Eq. (5)]. This modification does not affect the
gradient-free upstream contour section [Eqs. (6) and (7)
for x < 0]. Instead, the local gradient �0 affects the asymp-
totic curvature for x ! 1, far away from the neck. This
gradient-modified curvature is then matched to the apex
curvature of another (gradient-free) drop contour for drop
1. At the apex of drop 1, the curvature is always negative,
whereas for Eqs. (6) and (7) for x > 0 (without gradient),
h00 > 0. Therefore, to match both curvatures, a local gra-
dient must be sufficiently ‘‘strong’’ to establish a negative
curvature for x > 0. Then, such matching links the parame-
ters of the individual solutions to a twin drop configuration.
The curvature at the neck (x ¼ 0) is derived from

Eqs. (6) and (7):

h00�0¼0ðx ¼ 0Þ ¼ �2ð3Ca=2Þ2=3s2=hN: (8)

For x�0¼0 ! 1 (the diverging contour section), the curva-

ture is finite and positive:

h00�0¼0ðx ! 1Þ ¼ 2�2ð3Ca=2Þ2=3p0
s2ðsð1ÞÞ2=hN: (9)

With �0 � 0 restricted to the neck region at x > 0, the
curvature change can be approximated:

h001 � h00�0¼0ðx ! 1Þ � 3

2�2

Z 1

0

�0

h�0¼0

dx: (10)

Here, the true hðxÞ is approximated by h�0¼0, the contour

without gradient. Of course, if we assume a significant
impact of the local �0ðxÞ, at some distance from the neck,
h will be different from h�0¼0. However, �

0ðxÞ is localized
and hðxÞ grows quickly. Thus, with increasing distance
from the neck, �0=h�0¼0 (the integrand) rapidly becomes

negligible: the integral error remains small, and the upper
integration limit is irrelevant and can be set to infinity (see
Supplemental Material [9]). Eq. (10) is integrated analyti-
cally by expanding h�0¼0ðxÞ around x ¼ 0 to second order

[see Eq. (8)]:

3

2�2

Z 1

0

�0

h�0¼0

dx � 3�~�

2hN
qðkÞ�1: (11)

Here, k ¼ Boð32 CaÞ1=3
ffiffiffiffiffiffiffiffiffi�s2

p
and �~� � ��=�2. qðkÞ is

lengthy (see Supplemental Material [9]), but (for typical
parameters) can well be approximated in powers of k:

qðkÞ � 1þ ffiffiffiffiffiffiffi
�k

p
=4þ kð�þ k=3Þ=16. Eqs. (10) and (11)

yield:

h001� 2

hN

�
�2ð3Ca=2Þ2=3p0

s2ðsð1ÞÞ2�3�~�

4
qðkÞ�1

�
: (12)
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FIG. 4 (color online). Moving drop contours with different
shape parameters s2. Dashed black lines: Analytical solutions
for homogeneous surface tension (single drop). Solid red lines:
Noncoalescing twin drop contour (numerical solution) for a
localized surface tension gradient �0 (top panel), and the corre-
sponding velocity field (middle).
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The second term indicates that the asymptotic curvature
may indeed become negative for sufficiently large �~�.

Equation (12) estimates the asymptotic curvature for
x ! 1 as a function of a local gradient. For a twin drop
configuration, it shall match the apex curvature of a
gradient-free drop (drop 1), described by Eqs. (6) and (7)
[replacing hN by h1 and s2 by s1, with s1 > 0 to parame-
trize at the apex instead of the neck. The apex curvature
is given by the corresponding Eq. (8)].

Moving twin drops with a stationary contour means
identical capillary numbers Ca, yielding

�~�¼4=3ð3Ca=2Þ2=3qðkÞ½hNs1=h1þ�2p0
s2ðsð1ÞÞ2�: (13)

Equation (13) contains the parameters s2, s1, hN , and h1
(and implicitly Bo), which represent experimental parame-
ters, such as the static equilibrium contact angles �e;1 and

�e;2, the drop volumes ( ¼ areas A1 and A2 under the drop

contours), andD. The contour area A2 (x < 0) is connected
to hN by

A2 ¼ ð3Ca=2Þ�1=3 h
2
N

�4

Z 1

s2

ps2ðsÞ�4ds: (14)

Matching the receding contact line to a microscopic
solution [15,16] gives s2 as a function of Ca, with�e;2 and

a slip length �c (besides A2) as parameters:

Ai 0ðs2Þ ¼ �e;2hN
6��c

ð3Ca=2Þ�1=3 exp

�
��3

e;2

9Ca

�
: (15)

Matching the advancing contact line of drop 1 to a
microscopic solution [inflection point of Eqs. (6) and (7)
approximated by si � s1 � 1] yields [15]

�e;1��ð12CaÞ1=3 ffiffiffiffiffiffiffiffiffiffiffiffiffi
s1�1

p
tanh23½ðs1�1Þ3=2�s3=21 �: (16)

A1 for drop 1 determines the apex height h1 [Eq. (14) with
suitable integration limits].

Now the system is closed. �~� propelling the drops with
Ca results from inserting solutions to Eqs. (14)–(16) into
Eq. (13). Figure 5 presents the ensuing Ca as a function
of �~� for various �e (assuming �e ¼ �e;2 ¼ �e;1).

Experimentally this means, the given combinations of �e

and �~� result in a certain Ca; i.e., the twin drops move at
a certain speed. Theoretical (Fig. 5) and experimental
(Fig. 2) findings agree quantitatively (within� 10%). Both
show that vN is approximately independent from �~�
(which is counterintuitive; �~� is obviously the source for
the motion). The analysis predicts that the contact angles
determine the order of magnitude for Ca. Assuming ex-
perimentally realistic conditions, the other parameters
change Ca by less than �25%. As depicted, changing D
by a factor of 100 (e.g., due to shear-induced dispersion;
see Supplemental Material [9]) barely affects Ca. Dif-
ferent, absolute, or relative drop sizes also have little
influence, because the (large) neck curvature dominates
the capillarity (not the much smaller drop curvatures).
The analysis leading to Fig. 5 assumes stationary con-

ditions. This requires large drop volumes so that the flow
between drop 2 and drop 1 changes the composition of
drop 1 and, thus, �~�, only slowly. Also, �~� has to be
sufficiently large so that the minor changes in �~� barely
change Ca, and vN is approximately constant (horizontal
sections of Ca vs �~� in Fig. 5). The range where Ca
decreases rapidly with decreasing �~� is quantitatively
not covered by our analytical approach. Experimentally,
immediate coalescence is observed here. Nevertheless,
via the flow through the neck, we can estimate the lifetime
of the noncoalescence (see Supplemental Material [9])
(which agrees well with the experiments).
Conclusion.—We present new experimental data of

noncoalescing sessile twin drops from different miscible
liquids. In a thin film approximation, they are described as
two moving drops that are connected by a liquid neck.
Through this neck, liquid flows from the upstream to the
downstream drop. An advection-diffusion balance estab-
lishes a localized, (temporarily) stable surface tension gra-
dient close to the neck, which causes a Marangoni flow that
sucks liquid out of the neck. This counteracts the capillary-
driven flow into the neck and thus stabilizes noncoales-
cence. The whole system forms a self-stabilizing, traveling
wave (twin-drop contour). The theoretical predictions are
in quantitative agreement with the experimental findings.
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