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We have measured the Soret coefficients of 41 out of 45 possible equimolar binary mixtures of 10 different

organic solvents and found an additive rule for the heats of transport. These can, except for an undetermined

offset, uniquelybe assigned to thepure components.Basedon their heats of transport, thefluidscanbearranged

according to their thermophobicity, similar to the standard electrode potential. A qualitative explanation of

this unexpected additivity is based on the work of Morozov [Phys. Rev. E 79, 031204 (2009)].
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The Soret effect describes mass diffusion in a multicom-
ponent system that is driven by a temperature gradient. The
corresponding motion of colloids is termed thermophore-
sis, and notable progress in understanding the dominating
mechanisms has been obtained for charged [1–4] and
magnetic [5–7] particles. In molecular mixtures, there is
no distinction between large solute particles and a solvent
continuum, and attempts have been made to relate specific
contributions to the Soret effect to molecular properties. In
particular, the Soret effect of isotopic mixtures has been
attributed to differences in molecular massM and moment
of inertia I [8–14]:

SisoT ¼ð~aM�1
2 þ ~bI�1

2 Þ � ð~aM�1
1 þ ~bI�1

1 Þ: (1)

~a and ~b are universal constants. Computer simulations
[15–17] have confirmed essential experimental trends
like the tendency of heavier molecules to go to the cold
side. Recently, the concept has been extended to pseudoi-
sotopic mixtures of chemically similar molecules and ex-
plained as a quantum effect at room temperatures [14], but
alternative theories are also discussed in the literature [18].

Denbigh [19] and Rutherford and Drickamer [20] have
derived expressions for the Soret coefficient based on the
heats of transport. Later, these ideas have been taken up
by Shukla and Firoozabadi [21] and others. Eslamian and
Saghir [22] distinguish between static and dynamic mod-
els. Static models, like that of Kempers [23], solely rely
on equilibrium properties to derive an expression for the
Soret coefficient. Dynamic models additionally require
nonequilibrium transport properties, such as activation
energies of self-diffusion or viscosity. In particular, the
models based on an estimation of the heats of transport
by certain activation energies have, with more or less
success, been tested for a number of systems [21,22,24].
One of us (KM) [25] based his statistical mechanical

theory on the temperature dependence of the partial pressure,
as first formulated by Bearman and Kirkwood [26]. Besides
a reasonable agreement for the benzene-cyclohexane system,
this theory could also be extended to account for the isotope
effect [14].
Since all models presently discussed are still rather

phenomenological or contain unknown parameters, we
have decided to address the question of to what extent the
Soret coefficient can be traced back to properties of the pure
components and, even more restrictive, whether simple
additive rules are obeyed, from the experimental side. Our
search for additivity has been motivated by the isotope Soret
effect, which has been found to depend on differences of
single molecule contributions of the pure compounds
[Eq. (1)]. When trying to find empirical correlations from
existing data, one is faced with the problem that experiments
are usually conducted for a certain class of material, e.g.,
alkanes or isotopic systems. Within these classes, many
physical parameters are very similar and correlations might
be owed to this circumstance. In order to avoid such prob-
lems, our approach has been to select n (an expandable
number) different fluids and to measure the Soret effect
for all possible pairs, which is a very demanding task, since
the experimental effort grows proportional to n2.
General framework.—The phenomenological descrip-

tion of the Soret effect is based on the established theory
of linear nonequilibrium thermodynamics [27,28]. Here,
we only briefly summarize the main results in order to
clearly define the relevant quantities. Following closely
the notation of de Groot and Mazur [28] and ideas
presented by Tichacek et al. [24], the reduced heat flow

( ~J0q) and the mass flow ( ~J1) in a binary mixture (n ¼ 2

components) of temperature T without external forces and
pressure gradients can be written in a barycentric reference
system as [29]
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~J0q ¼ �Lqq

rT
T2

� Lq1

ð@�1=@c1Þp;T
c2T

rc1; (2)

~J1 ¼ �L1q

rT

T2
� L11

ð@�1=@c1Þp;T
c2T

rc1: (3)

Lqq, L11, and L1q ¼ Lq1 are the Onsager coefficients, c1
and c2 ¼ 1� c1 are the mass fractions of component
1 and 2, respectively, and �1 is the chemical potential per

unit mass of component 1. The reduced heat flow ~J0q and the
total heat flow ~Jq are related by ~Jq ¼ ~J0q þ ðh1 � h2Þ ~J1,
with hk being the partial specific enthalpy of species k.
Because of mass conservation, there is only one independent

flow ( ~J1 ¼ � ~J2). The absolute flows in the lab system are

~Jabsk ¼ �k ~vk ¼ ~Jk þ �k ~v ðk ¼ 1 . . . nÞ; (4)

~Jabsq ¼ ~J0q þ
Xn

k¼1

hk�k ~vk: (5)

~vk is the absolute velocity of component k in the laboratory
system, �k its density, and ~v ¼ P

n
k¼1ð�k ~vkÞ=� the barycen-

tric velocity. ~J0q is invariant for the change from relative to

absolute flows [28].
Heats of transport are defined for isothermal systems by

relating the isothermal heat flows (rT ¼ 0) to the respec-
tive mass flows:

~J0q ¼
Xn

k¼1

Q0�
k;abs

~Jabsk ¼ Xn�1

k¼1

Q0�
k
~Jk: (6)

Q0�
k;abs and Q0�

k ¼ Q0�
k;abs �Q0�

n;abs are termed absolute re-

duced heat of transport and reduced heat of transport,
respectively. Utilizing the symmetry relation Lq1 ¼ L1q,

the reduced heat of transport is expressed by the Onsager
coefficients:

Q0�
1 ¼ Q0�

1;abs �Q0�
2;abs ¼

L1q

L11

: (7)

Diffusion (D) and thermal diffusion (DT) coefficients

are defined by writing the mass flow as ~J1 ¼ ��Drc1 �
�c1c2DTrT, and comparison with Eq. (3) yields

D ¼ L11

�c2T

�
@�1

@c1

�

p;T
; DT ¼ L1q

c1c2�T
2
: (8)

The Soret coefficient is the ratio between DT and D:

ST � DT

D
¼ Q0�

1

c1Tð@�1=@c1Þp;T : (9)

Molar instead of specific quantities are introduced by
defining the molar absolute reduced heat of transport
~Q0�
k;abs ¼ Q0�

k;absMk, with Mk being the molar mass of com-

ponent k. The transition from mass fractions ck to mole
fractions xk is achieved by ck ¼ xkMkðx1M1 þ x2M2Þ�1.

Using the molar chemical potential ~�1 ¼ �1M1 and the

Gibbs-Duhem relation [21] x1 ~Q
0�
1;abs þ x2 ~Q

0�
2;abs ¼ 0, the

Soret coefficient can be expressed in terms of molar
quantities:

ST ¼
~Q0�
1

x1Tð@ ~�1=@x1Þp;T : (10)

~Q0�
1 � ~Q0�

1;abs� ~Q0�
2;abs¼M1M2ðx1M1þx2M2Þ�1Q0�

1 is the

molar reduced heat of transport. Equation (10) is, except
for the different sign convention, identical to the
working equation used by Shukla and Firoozabadi
[Eq. (16) in Ref. [21]]. Using x1ð@ ~�1=@x1Þp;T ¼
RT½1þ ð@ ln�1=@ lnx1Þp;T� [30] and, for a simplified

notation, the abbreviation Qk � ~Q0�
k;abs for the molar abso-

lute reduced heats of transport, Eq. (10) becomes

ST ¼ Q1 �Q2

RT2½1þ ð@ ln�1=@ lnx1Þp;T�
: (11)

�1 is the activity coefficient of component 1 and R the gas
constant. The denominator is a pure equilibrium quantity,
but the situation is less clear for the heats of transport.
Some nonequilibrium properties, like molecular friction
coefficients, are factored out in Eq. (7), as has been shown
for polymer solutions near the glass transition [31].
Nevertheless, the question of to what extent the Soret
coefficient is an equilibrium or a nonequilibrium quantity
is still a matter of debate.
Experiments and methods.—For a broad data base, we

have measured the Soret coefficients of 41 out of the
possible nðn� 1Þ=2 ¼ 45 equimolar binary mixtures of
n ¼ 10 solvents, numbered from 0 to 9, as shown in
Fig. 1. Four systems have insufficient refractive index
contrast. The temperature was always 25 �C. The experi-
mental techniques employed were heterodyne thermal

FIG. 1 (color online). Investigated binary equimolar mixtures
of ten different solvents. The numbers are the Soret coefficients
and the thermodynamic factors of the respective mixtures.
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diffusion—forced Rayleigh scattering (TDFRS) [32] and,
in some cases, a Soret cell with optical beam deflection
(OBD) [33]. The numbering of the solvents does not follow
a particular rule and reflects the sequence of how the data
base has been built up. The Soret coefficients are always
determined for the component with the lower index as
the independent one, corresponding to mole fraction x1
in Eq. (11). A positive sign of ST means that the indepen-
dent component migrates to the cold side. Since we only
discuss equimolar mixtures, swapping of the two compo-
nents merely reverses the sign of ST .

The activity coefficients �iðxiÞ have been calculated by
Modified UNIFAC (Dortmund) [34], which is a group con-
tribution method. The activity coefficient is calculated using
van der Waals volume and surface areas and group interac-
tion parameters [34,35]. Some activity coefficients have
additionally been calculated by the PC-SAFT equation of
state [36,37]. This method is based on pure-component
parameters (segment number, segment diameter, and the
dispersion energy) and binary interaction parameters, which
are determined from vapor pressure and liquid density data
of the pure components [36] and from vapor-liquid equilib-
rium data, respectively. The agreement between PC-SAFT
and UNIFAC (Dortmund) is within a few percentage points.

The thermodynamic factors [1þ ð@ ln�1=@ lnx1Þp;T] of
the mixtures are listed in Fig. 1. In the case of nonpolar
systems, there is only a small deviation from unity, but for
mixtures with the polar acetone the thermodynamic factor
plays a decisive role in Eq. (11).

Results.—Inspired by the isotope Soret effect [Eq. (1)],
the first idea for a simplified additive model is for the
Soret coefficients directly, similar to the behavior observed
for the hydrocarbon chain-aromatic compound mixtures in
Ref. [38]. By assigning a single ‘‘Soret number’’ si to every
component i, the Soret coefficient of the mixture of i and j
would then be written as

SijT ¼ si � sj: (12)

Since there are 41 measured Soret coefficients for the 10
unknown si numbers, the problem is highly overdeter-
mined, and the si numbers are obtained from a least
squares fit such that

X

i;j

ðSðijÞT � ðsi � sjÞÞ2 ¼ minimum: (13)

SðijÞT is the measured Soret coefficient of the mixture of
components i and j. The result of this procedure is shown

in Fig. 2, where the measured Soret coefficient ST ¼ SðijÞT is
plotted along the abscissa and the one recalculated from the
Soret numbers si according to Eq. (12) along the ordinate.

There are two different data sets. One encompasses all
ten compounds and the other one only nine, without the
polar acetone. From all data, it is immediately clear that an
assignment of unique Soret numbers is not possible.
Without acetone the correlation is much better. The two

dashed lines in Fig. 2 indicate a �ST ¼ �½10�3� K�1

interval, which corresponds to an, albeit small, change of
ST that can safely be resolved in an experiment.
For polar compounds, the thermodynamic factor

[1þ ð@ ln�1=@ lnx1Þp;T] significantly deviates from unity.

Thus, the next step is to factor out this nonideality and to
consider the heats of transport

Q �Q1 �Q2 ¼ STRT
2½1þ ð@ ln�1=@ lnx1Þp;T� (14)

instead of the Soret coefficients. The minimization, in
analogy to Eq. (13), now directly yields the individual

absolute molar reduced heats of transport Qi � ~Q0�
i;abs.

The result is plotted in Fig. 3. The correlation is
convincing, and there is now a good agreement between
the measured and the recalculated values. Obviously, the
thermodynamic factor fully accounts for the strong de-
viation of the polar mixtures in Fig. 2. In particular, the
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shows the isotope effect of cyclohexane in acetone.

PRL 109, 065901 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

10 AUGUST 2012

065901-3



mixtures of acetone with cis- and trans-decalin are nicely
brought back onto the diagonal. The single apparent outlier
is hexane-acetone, which might be caused by the very
small thermodynamic factor. There is only a slight im-
provement for the subset without acetone. Again shown
by dashed lines is the confidence interval that corresponds
to �ST ¼ �½10�3� K�1. It has been transformed (assum-
ing ideal behavior) according to a �Q ¼ �STRT

2 and now,
other than in Fig. 2, contains almost all data points.

According to our results, it is possible to assign a single
heat of transportQi to every pure substance that determines
its thermophobicity, its tendency to migrate towards the
cold side (Fig. 4). In an equimolar binary mixture, a com-
petition takes place, and the substance with the larger value
ofQi will migrate towards the cold (thermophobic) and the
one with the lower value towards the warm (thermophilic)
side. The Soret coefficient of the mixture can be calculated
from Eq. (11). The additionally required thermodynamic
factor is obtained from equilibrium thermodynamics.
Surprisingly, these absolute molar reduced heats of
transport are properties of the pure compounds and do not
depend on the mixing partner. As for the standard electrode
potential, only differences of the heats of transport can be
measured, and the zero point, here tetralin, can be chosen
arbitrarily. From a careful consideration of all error sources,
we estimate the uncertainties at �Qi � ½0:2� kJ=mol.

Interpretation.—The additivity of the heats of transport
and their assignment to the pure components is a very
unexpected experimental result, which does not rely on a
particular model for the Soret coefficient. In the remaining
part of this work, we will give some qualitative arguments
on how this surprising finding can be rationalized in terms

of the theory given in Ref. [25]. We want to emphasize that
even if this interpretation might be challenged, both the
experimental observation and the underlying theory up to
Eq. (11) remain unaffected.
According to Ref. [25], the Soret coefficient of dilute

mixtures can be decomposed into two additive contribu-
tions, ST ¼ SpurT þ Smix

T , where SpurT is determined by prop-
erties of the pure liquids and describes a situation with a
vanishing excess volume of mixing. Smix

T accounts for
mixing effects.
For a dilute mixture with a solute (component 1) and a

solvent (component 2), the first contribution to the Soret
coefficient S

pur
T ¼ S

pur
T ðd1; d2; a1; a2; �Þ is determined by

the characteristic diameters di of the particles, their inter-
action parameters ai, and the solvent volume fraction �.
The generic form of any contribution to the Soret coeffi-
cient has the form of a difference of some thermodynamic
property F between the mixture and the pure solvent [25]:

S
pur
T ¼ Fðd1; d2; a1; a2; �Þ � Fðd2; a2; �Þ: (15)

Very often, the properties of the pure components are
comparable, d1 � d2, a1 � a2, and Eq. (15) can be written
as a Taylor series with the single nontrivial term

SpurT;1in2 ¼ Aðd1 � d2Þ þ Bða1 � a2Þ: (16)

The subscript explicitly indicates the type of mixture.
The coefficients A and B depend only on solvent properties.
Since the differences in Eq. (16) are assumed to be small,
both coefficients can be considered as some averaged values
for both components. Let us now exchange solute and sol-
vent, with particle 2 now being solute and particle 1 solvent.
Eq. (16) can then be rewritten as SpurT;2in1¼Aðd2�d1Þþ
Bða2�a1Þ with the same values of both coefficients A and
B, according to the above reasoning. We now interpolate
these results for the two limiting cases to arbitrary concen-
trations. Using the simplest linear approximation in mole
fractions of both components, the contribution to the Soret
coefficient of the first component is

SpurT;1 ¼ Aðd1 � d2Þ þ Bða1 � a2Þ ¼ f1 � f2 (17)

with fi :¼ Adi þ Bai.
Next, we consider the mixing term Smix

T —which, for the
first dilute mixture (1 in 2), is based on Ref. [25]:

Smix
T;1in2 � C�V1: (18)

Here, �V1 is the defect of the molar volume of the solute.
Similarly toA andB, coefficientC can be considered as some
averaged property for both components. For the ‘‘inverse’’
mixture (2 in 1) we obviously have Smix

T;2in1 � C�V2. As

above, we interpolate to arbitrary concentrations, using the
thermodynamic relation for both limiting volume defects:
�V1 ¼ ð@VE=@x1Þx1!0 and �V2 ¼ �ð@VE=@x1Þx1!1 with

VEðx1Þ being the excess volume ofmixing. The symmetrized
form of the interpolation then is
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Smix
T;1 � C

@VE

@x1
; (19)

which, in contrast to S
pur
T;1, has a nonadditive form.

Summarizing Eqs. (17) and (19) and taking into account
the fact that the diffusion coefficient at finite concentra-
tions additionally contains the thermodynamic factor
[1þ ð@ ln�1=@ lnx1Þp;T] [39], the most general relation

for the Soret coefficient becomes

ST � f1 � f2 þ Cð@VE=@x1Þ
½1þ ð@ ln�1=@ lnx1Þp;T� : (20)

For a large number of mixtures, including the acetone
systems [40], the function VEðxÞ turns out to be highly
symmetric around x ¼ 0:5 [39], and the derivative
@VE=@x1 is negligible for equimolar mixtures. Thus, the
product ðST½1þ ð@ ln�1=@ lnx1Þp;T�Þx1¼0:5 is an additive

property in the case of equimolar mixtures, in agreement
with our observations. Because of the vanishing mixing
term, the fi in Eq. (20) can be identified with the heats of
transport Qi of Eq. (11): fi ¼ Qi=ðRT2Þ. This may, how-
ever, not necessarily be true for arbitrary concentrations,
which are beyond the scope of the present study.

Finally, we want to point to a still unsolved problem: the
additivity of the heats of transport is, strictly speaking, not
compatible with the additivity of the isotope effect. This is
notable in cases where the thermodynamic factor becomes
important. As shown in the insert of Fig. 3, the isotope
effect of cyclohexane in acetone markedly deviates from
the expected shift along the diagonal. The thermodynamic
factor of these mixtures is only 0.18 (Fig. 1). For all other
mixtures with cyclohexane and cyclohexane-d12, the iso-
topic shift of Q is additive within experimental resolution.
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[13] G. Wittko and W. Köhler, J. Chem. Phys. 123, 014506

(2005).
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