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We prove that the harmonic measure is stationary, unique, and invariant on the interface of diffusion

limited aggregation (DLA) growing on a cylinder surface. We provide a detailed theoretical analysis

puzzling together multiscaling, multifractality, and conformal invariance, supported by extensive numeri-

cal simulations of clusters built using conformal mappings and on a lattice. The growth properties of the

active and frozen zones are clearly elucidated. We show that the unique scaling exponent characterizing

the stationary growth is the DLA fractal dimension.
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Introduction.—Albeit the diffusion limited aggregation
model (DLA) was introduced 30 years ago [1], it still
embodies the perfect puzzle for theorists. In spite of the
enormous amount of numerical works, only few rigorous
results are proven, and these all concern the generalized
dimensions of the aggregate. The notion of varying dimen-
sionality characterizes the DLA growth in twoways: multi-
scaling and multifractality. Multiscaling suggests that the
aggregate’s fractal dimension attains different local values
dðr=RÞ on each circular ring of radius r, while the overall

gyration radius RðNÞ � N1=D (N and D, cluster’s particles
number and fractal dimension) [2,3]. Multifractality [4]
entails the introduction of generalized dimensions D qð Þ,
which correspond to the fractal dimension of the q points
correlation function. The aforementioned rigorous results
are:Dð0Þ � 3=2 [5],Dð1Þ ¼ 1 [6] andDð3Þ ¼ Dð0Þ=2 [7].
A simpler definition of DðqÞ is provided by the connection
with the harmonic measure, i.e., the growth probability at
the interface. In general, the determination of the harmonic
measure within the fjords of the fractal, is a quite impos-
sible task if resorting to the usual numerical techniques [8].
Iterated conformal mapping [9] provides a solution to this
problem [10]: indeed, it is based on the representation of
the growth dynamics via the convolution of elementary
complex functions ��n;�nðwÞ, hereafter, named �nðwÞ,
which map the unitary circle onto a unitary circle with a
bump of linear size

ffiffiffiffiffiffi
�n

p
placed at position w ¼ ei�n [11].

The ensuing function z ¼ �ðNÞðei#Þ ¼ �1 ��2 � � � � �
�Nðei#Þ transforms the unitary circle ei# onto the cluster’s
interface z. Furthermore, conformal mapping has been
extended to DLA growing on a cylinder surface [12]: in
this case, the mapping function is

�ðNÞðei#Þ ¼ �i
L

2�
ln½�ðNÞðei#Þ�; (1)

where L is the cylinder circumference and �ðNÞ represents
the radial deformation of the cylindrical aggregate (see
Supplemental Material [13]). The DLA overall height

grows as hðNÞ ’ L
2� lnFðNÞ

1 , where FðNÞ
1 ¼ �N

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �n

p
is the first Laurent coefficient of �ðNÞ [9,11].
In this Letter, we provide another rigorous result con-

cerning the harmonic measure of a DLA growing in a
cylindrical geometry. We show that the growth probability
at the interface is stationary, unique, and invariant, leading
to the conformal invariance of the complex mapping
function. Our framework provides the natural connection
between multiscaling and multifractality, and offers a
clear-cut definition of the frozen and active zone of the
aggregate. Moreover, we show that the stationarity leads to
the appearance of the fractal dimension D as the unique
exponent governing the growth dynamics, in stricking
contrast to DLA in radial geometry.
Height’s scaling and growth velocity.—The average

height of a cylindrical aggregate grows according to the
following law [12]: hhðNÞi ¼ Lð N

hn0iÞ� if N � hn0i and

hhðNÞi ¼ L N
hn0i if N � hn0i [� ’ 4=3, hn0i ¼ 1

� ð
ffiffiffiffi
�0

p
L Þ�D]

(Ref. [13], Fig. 7). The first regime accounts for a self-
affine initial growth, while the DLA attains the linear self-
similar regime after an average time hn0i, namely, the
transient on which the cluster forgets about its initial
condition, i.e., the cylinder’s baseline. From the scaling

of hhðNÞi and the expression of FðNÞ
1 , one obtains hhðNÞi ’

L
4�

P
N
n¼1h�ni, which furnishes the expression of the

average height’s growth velocity: dhhðNÞi=dN ’ L
4� h�Ni.

Thus, the average elementary increment h�ni grows as

�4�� n��1

hn0i� for n � hn0i, and it gets to the stationary value
4�
hn0i for n � hn0i (Ref. [13], Fig. 8). This suggests that self-
similarity is intimately connected to the height’s velocity
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stationary growth, in contrast with DLA in radial geometry
[11]: in this case, the radius growth is clearly nonstationary and
h�ni ¼ 2=ðnDRÞ, withDR ’ 1:71 radial cluster’s dimension.

Harmonic measure.—We now proceed to the evaluation
of the harmonic measure [1]. The DLA interface is the
union of different arcs, which are the (remaining) bounda-
ries of the N particles composing the cluster. Each arc may
be labeled by �zn where n is the generation when the n-th
bump was added to the structure; besides, we identify the
middle point zn as the representative point of the entire arc

[Fig. 2, inset (b)], and we calculate the probability PðNÞðznÞ.
The latter is the normalized electric field on the fractal’s

interface [14], i.e., PðNÞðznÞ / jEðNÞðznÞj, which is con-

nected to the Jacobian of Eq. (1) as jEðNÞðznÞj ¼
jr�ðNÞðei#N

n Þj�1 [9,11]. The angle #N
n represents the coun-

terimage of zn on the unitary circle, and must be subjected
to a reparametrization whenever a new particle is added
[10,12]. Indeed consider a DLA at two different genera-
tions N and N � k, with k 2 ½1; N � n�: the position zn
remains unchanged whether the cluster has N or N � k

particles, i.e., zn ¼ �ðNÞðei#N
n Þ ¼ �ðN�kÞðei#N�k

n Þ, yielding
ei#

N
n ¼ ��1

N ���1
N�1 � � � � ���1

N�kþ1ðei#N�k
n Þ; (2)

where ��1
n is the inverse of �n [10,12]. Thus, any #N

n can
be determined from its initial value #n

n ’ �n. The electric

field at zn can be calculated as jEðNÞðznÞj ¼ jEðnÞðznÞj
�N

k¼nþ1
j�0

k
ðei#kn Þj ,

where �0
n is the derivative of �n. Figure 1 shows the

probability PðNÞðznÞ as a function of n, for a single DLA
realization at six different values of N. The harmonic

measure �N;n is the ensemble average of PðNÞðznÞ, i.e.,
�N;nð

ffiffiffiffi
�0

p
L Þ ¼ hPðNÞðznÞi; from the numerics its behavior is

stationary, depending solely on the difference N � n:

�N;n’ 1

hnPi	

8>>>>>>><
>>>>>>>:

�
n

hnPi

�
�
e�ðN�n=hnPiÞ n�hn0i

e�ðN�n=hnPiÞ hn0i�n�N�hnAZi� ffiffiffiffi
�0

p
L

�
�ðn�N=hnPiÞ

N�hnAZi�n�N

;

(3)

nAZ represents the number of particles that compose the
active zone of the DLA [15]. Firstly, we focus on the frozen
zone for which n � N � hnAZi: a quantitative analysis of
the measure’s scaling in the active region, will be given in
the following. The probability of a point belonging to the
frozen interface exhibits an apparent exponential decay,
with a characteristic time nP. This arises from the electric
field expression, indeed for any point in the frozen zone

j�0
kðei#k

n Þj ’ e1=nP , if k � nþ nAZ. This suggests that a

point in the frozen zone cannot influence the growth
dynamics, since the probability in zn does not depend on
the specific choice of the elementary function �k when
k � nþ nAZ. On the other side, it points to the notion of

conformal invariance [9], since two conformal transforma-
tions�n and�k commute whenever k � nþ nAZ. Indeed,
given a mapping function �NðwÞ with N � nAZ � k �
nþ nAZ, the size of the new bump

ffiffiffiffiffiffiffiffiffiffiffi
�Nþ1

p
and the ensuing

growth dynamics will remain unchanged whether �k is
swapped with �n. nP can be accurately measured for any
zn lying in the frozen zone, indeed from Eq. (3) one has

nP ¼ ðN2 � N1Þ=½lnPðN1ÞðznÞ � lnPðN2ÞðznÞ�, with N2 and
N1 two arbitrary generations. The scaling of hnPi is dis-
played in Fig. 3.
Active zone.—A zoom of�N;n for n 2 ½N � hnAZi; N� is

shown in Ref. [13] in Fig. 9 panel (a). The active zone is
the region where new particles join the existing cluster
[15–17]; our observation indicates that it corresponds to
the region occupied by the last nAZ (Fig. 2). Conformal
mapping transforms �N;n to the uniform measure on the

unitary circle [9,11]:

PðNÞðznÞdzn ¼ d#N
n

2�
; (4)

where dzn represents the infinitesimal interface’s portion
around zn. Hence, we can define the active zone through
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FIG. 1 (color online). Probability distribution on DLA inter-
face. PðNÞðznÞ is shown for a single DLA realization (�0 ¼ 10�5,
L ¼ 1) for N ¼ 104, 2	 104, 3	 104, 4	 104, 5	 104 and
6	 104 (from left to right). (a) PðNÞðznÞ as function of generation
n: dotted line corresponds to the self-affine regime, i.e.,
n�

n�þ1
P

e�ðN�n=nPÞ (� ¼ 4=3). (b) Rescaling of PðNÞðznÞ: probabil-
ities at different N collapse on top of each other exhibiting the
N � n dependence. Dashed lines show the self-affine region (n0)
and the active zone (nAZ). (c) Ratio between PðNmaxÞðznÞ (Nmax ¼
6	 104) and the curves in panel (a), showing the stationarity in
the frozen zone (from bottom to top).
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the relation
P

N
n¼N�nAZ

�#N
n

2� � 0:95 [Fig. 2, inset (a)]. The

scaling of hnAZi is shown in Fig. 3. Now, a well-established
fact is that �N;n in the active zone exhibits a multifractal

scaling [4,10,18]. In this context, growth probability scales
differently in different regions characterized by the multi-

fractal exponent �, namely �ð
ffiffiffiffi
�0

p
L Þ � ð

ffiffiffiffi
�0

p
L Þ� (�min 
 � 


�max) [18]. Numerical simulations show that � exhibits a
stationary dependence on the ratio ðn� NÞ=hnPi: �ðn�N

hnPi Þ
[Ref. [13], Fig. 9 panel (b)]. This relation bridges together
multiscaling and multifractality. Indeed, it has been pro-
posed that, although distinct phenomena, multiscaling and
multifractality may provide an equivalent description
whether � ¼ �ðrRÞ, where r and R represent an inner and

the overall radius of a radial cluster [2]. Since the average
radii of the radial deformation of the aggregate scale as

hri � e2�n=hn0i and hRi � e2�N=hn0i (Fig. 1 in Ref. [13]), we
get �ðrRÞ � �ðn�N

hnPi Þ where hnPi � hn0i (Fig. 3). However,
this relationship does not hold for truly radial DLA.
At this point, a question arises: how long does zn take to

pass from the active to the frozen zone? This question is
better addressed on the unitary circle. Indeed, when a new
bump is created at �n ’ #n

n , its size on the unitary circle is

approximately
ffiffiffiffiffiffi
�n

p ’ �#n
n [11], with h�#n

n i’
ffiffiffiffiffiffi
4�
hn0i

q
. When

N > n, the angle #N
n changes its position due to

Eq. (2), and �#N
n shrinks because of the decay of the

probability PðNÞðznÞ [Eq. (4)]. Eventually, �#N
n shrinks

to zero (within the machine precision) and the angles
#N
n , counterimages of the points lying in the frozen

zone, become indistinguishable on the unitary circle
[Fig. 2, inset (a)]. We measured the average time hnOLDi
for which �#nþnOLD

n ’ 0 (Fig. 3). Moreover, the fact that
the frozen zone almost corresponds to a unique angle on

the unitary circle, explains why j�0
kðei#k

n Þj ’ j�0
kðei#

k

n0 Þj ’
e1=nP (k � nð0Þ þ nAZ � nð0Þ þ nOLD) and the ensuing
conformal invariance, as any �kðei�N Þ commutes with

�nðei�N Þ leaving unaffected the value of �ðNÞðei�N Þ
(N � nOLD � k � nþ nOLD).
DLA collapse.—So far, we provided a strong evidence of

the stationarity of the harmonic measure. The next step is
to prove that it is unique and invariant: indeed, estimates of
�N;n could be strongly affected by fluctuations ‘‘and’’ and

‘‘or’’ memory effects. In general, a sufficient condition for
the assessment if a stochastic process has one invariant
measure, is the coupling of two realizations of the process
with different initial conditions but the same randomness.
If one is able to prove that both processes collapse with
probability one, this means that there exists a unique
invariant measure [19] (see Sec. II in Ref. [13]).
In conformal mapping, the stochastic process is defined

by the angles ½�1; . . . ; �N�. Hence, we consider as indepen-
dent initial conditions ½�ð1Þ1 ; . . . ; �ð1ÞNinit

� and ½�ð2Þ1 ; . . . ; �ð2ÞNinit
�

(Ninit � hn0i), and we extract subsequent angles according
to �ð1ÞN ¼ �ð2ÞN (N >Ninit): collapse arises if and only if

ð1Þ�#N
n ¼ ð2Þ�#N

n , 8n 2 ½N � hnAZi; N� (Fig. 5 in
Ref. [13]). However, this procedure is strongly affected
by systemical errors induced by �n [11,12,20] (Sec. III of
Ref. [13]): if a growth attempt is made close to the frozen
regions, unphysical particles tend to fill the fjords of the
aggregates, leading to clusters’ divergence rather than
collapse. Thus, we apply the collapsing procedure to
DLA on a lattice.
For DLA on a lattice, randomness is given by the

Brownian nature of the upcoming particle’s path: a collaps-
ing protocol may consist on taking the same diffusive
trajectories, for particles released from the upper cylinders’
boundaries in both DLA. Therefore, after two initial
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-1.6814

FIG. 3 (color online). Scaling of the characteristic times
ruling the DLA growth. Different characteristic times seems to

fulfill the scaling law �ð
ffiffiffi
�

p
0

L Þ�D, with D ’ 1:67 fractal dimen-

sion. We took hn0i ¼ 4�
h�ni and L ¼ 1.

FIG. 2 (color online). Active zone of the DLA. Typical DLA
realization obtained through (1) (�0 ¼ 10�4, L ¼ 1): black
(dark) and red (bright) regions represent the frozen and the active
zone. Inset (a): DLA interface on the unitary circle. Red crosses
are the boundaries of �#N

n for n2½N�nAZ;N�, black circles for
n�N�nAZ: arrow shows where the counterimage of the frozen
zone is mostly concentrated. Inset (b): boundary of the DLA
showing �zn (bright magenta) and the representative point zn.
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conditions have been built [Fig. 4, panel (a)], protocol is
started and it is stopped only when both DLA have col-
lapsed [Fig. 4, panel (b)]; i.e., when they are identical
within a window of height 3L. The average collapsing

time hnCi shows a stretched exponential behavior, hnCi �
eð1=LÞ�0:5

, valid in square and in hexagonal lattices [Fig. 4,
panel (c)]. The outlined collapsing protocol requires that
both DLA are overlapping in a spatial window: we now
want that collapse occurs when they are identical within a
temporal window hnAZi. In this case, DLA collapse is the
physical distance between the positions of the last hnAZi
homologous particles is zero. Our results strongly indicate
that the stretched exponential decay is robust to the change
of lattice geometry and definition of collapsing criteria
[Fig. 4, panel (c)], but is definitely different from what

has been observed for hn0i, hnPi, hnAZi and hnOLDi �
ð

ffiffiffiffi
�0

p
L Þ�D (Fig. 3), that is the average number of particles

composing a DLA in a box L	 L.
The observed stretched exponential behavior is ex-

plained within the conformal mapping framework. The
collapsing time nC can be expressed as n�1

C /
hpðfð1Þ�#N

n gÞpðfð2Þ�#N
n gÞi�nAZ

k¼0�ðð1Þ�#N
N�k �ð2Þ �#N

N�kÞ,
where the joint probability distribution pðfð1Þ�#N

n gÞ is

pðð1Þ�#N
N�nAZ

; . . . ;ð1Þ �#N
N Þ, and �ðxÞ is the Dirac

delta function. Assuming �#N
n uncorrelated, we have

that n�1
C / �nAZ

k¼0hpðð1Þ�#N
N�kÞ2i. Now, taking

pðð1Þ�#N
N�kÞ � e�½ð1Þ�#N

N�k
=hð1Þ�#N

N�k
i�
, thanks to Eq. (4)

we finally obtain nC ��nAZ
k¼0he2ðPðNÞðzN�kÞ=�N;N�kÞi �

�nAZ
k¼0he2PðNÞðzN�kÞð

ffiffi
�

p
0

L Þ��ðk=hnPiÞ i.
Conclusions.—We have shown that the harmonic mea-

sure is stationary, unique and invariant on the DLA inter-
face. As a matter of fact, within this comprehensive
framework, the system’s stationarity entails that multiscal-
ing, multifractality, and conformal invariance appear as a
unique emergent property of the growth dynamics.
Moreover, the stationarity allows the precise definition of
characteristic times, whose scaling exhibit a sole critical
exponent: the aggregate’s fractal dimension. This is at odds
with radial DLAs, for which a stationary phase and an
ensuing single scaling exponent cannot be identified, cast-
ing very fundamental doubts on the possible existence and
definition of a fractal dimension in this geometry. Most
important, the uniqueness and invariance of the harmonic
measure paves the way for the notion of ergodicity in
fractal growth phenomena.
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