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A formula for the laser linewidth of arbitrary cavities in the multimode nonlinear regime is derived from

a scattering analysis of the solutions to semiclassical laser theory. The theory generalizes previous

treatments of the effects of gain and openness described by the Petermann factor. The linewidth is

expressed using quantities based on the nonlinear scattering matrix, which can be computed from steady-

state ab initio laser theory; unlike previous treatments, no passive cavity or phenomenological parameters

are involved. We find that low cavity quality factor, combined with significant dielectric dispersion, can

cause substantial deviations from the Shawlow-Townes-Petermann theory.
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The intrinsic linewidth of a laser arises from quantum
fluctuations and would be zero in the absence of sponta-
neous emission. It is the most important property of lasers
which arises from the quantization of the electromagnetic
field. Its value depends on the properties of the specific
laser cavity and gain medium, and was first calculated in
the seminal work of Schawlow and Townes (ST), who
found the famous linewidth formula [1]

�!ST ¼ @!0�
2
c

2P
; (1)

where !0 is the frequency of the laser mode, �c is the
linewidth of the relevant passive cavity resonance, and P is
the modal output power. Note that in this formula the
properties of the gain medium are absent.

Improved theoretical analyses over the next several dec-
ades found three multiplicative corrections to the ST for-
mula, all of which tended to increase the linewidth, in some
cases by large factors [2,3]. One correction factor arises
from incomplete inversion of the gain medium, and a
second one from indirect phase fluctuations due to the
instantaneous intensity change caused by spontaneous
emission (the Henry � factor) [3]. The third correction—
possibly the most interesting and complicated one, and the
main focus of this Letter—is the Petermann factor K. First
discovered in the context of transverse gain-guided
semiconductor lasers [4] and subsequently generalized
[2,5–11], the Petermann factor arises from the non-
Hermitian nature of the laser wave equation, due to the
presence of the gain medium as well as the openness of the
laser cavity (i.e., spatially nonuniform outcoupling loss). It
always leads to an enhancement of the linewidth, even with
uniform gain and no gain guiding. Typically, it is calcu-
lated from the nonorthogonal passive cavity resonances as

K ¼
��������
R
drj’ðrÞj2R
dr’ðrÞ2

��������
2

; (2)

where the integrals are taken over the cavity. In effect, the
Petermann factor changes the ST linewidth by the replace-
ment �2

c ! K�2
c. This is a significant correction for lasers

with large outcoupling; Ref. [2] measured it to be in the
range 1.1–1.6 for conventional semiconductor lasers. We
shall refer to the standard theory, inclusive of the
Petermann factor, as the Schawlow-Townes-Petermann
(STP) theory.
The extensive and impressive literature on the

Petermann factor [2,4–11] has, with one major exception
[9], only treated single-mode lasing near threshold, ne-
glecting the effects of spatial hole-burning. And apart
from a recent paper by Schomerus [11], the literature has
exclusively treated one-dimensional or waveguide lasers
and, thus, is not directly applicable to the variety of com-
plex laser cavities developed during the past twenty years,
such as microdisk and deformed-disk lasers, photonic
crystal lasers, and random lasers. In this Letter, we derive
a general formula for the intrinsic laser linewidth in arbi-
trary cavities, valid far from threshold, with strong spatial
hole burning, and in the multimode regime. The formula
relates the linewidth to a nonlinear self-consistent scatter-
ing matrix (S matrix), and is based on the recently devel-
oped steady state ab initio laser theory (SALT) [12–15].
SALT is a method for solving the steady-state

lasing properties of arbitrary lasing structures without
directly integrating the semiclassical laser equations.
‘‘Semiclassical’’ here refers to the fact that the field is
treated via the classical Maxwell equations, whereas the
properties of the gain medium are obtained from a
quantum-mechanical calculation of a multilevel atom.
SALT treats the openness of the cavity exactly, and the
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nonlinear modal interactions and gain saturation are
included to infinite order. Its results agree well with
numerical integration of the laser equations, but it is com-
putationally much more efficient [16,17]. It has been ap-
plied to complex laser structures such as random [14] and
photonic crystal lasers [18]. We shall show that this method
can be combined with the quantum input-output theory of
Refs. [19,20], to calculate quantum fluctuation properties
ab initio, in terms of quantities obtainable from SALT.
SALT associates each laser mode with a scattering
pole—an eigenstate of a classical nonlinear Smatrix which
has an infinite eigenvalue at a real frequency. We show that
the linewidths of a multimode laser are determined by the
residues of those poles. For a low-Q cavity with significant
dielectric dispersion, the generalized linewidth formula
predicts a substantial deviation from the STP behavior:
the linewidth is significantly less than the standard
Petermann correction predicts, and it has an anomalous
power dependence.

The multimode SALT equations are [15]

�
r2 þ

�
�cð ~rÞ þ �?Dð ~rÞ

!� �!a þ i�?

�
!2

�

�
��ð ~rÞ ¼ 0;

Dð~rÞ ¼ D0ð~rÞ
�
1þ Xn

�¼1

��j��ð ~rÞj2
��1

;

(3)

where �� is the �th steady-state lasing mode, !� is its

frequency, �c is the passive cavity dielectric function, �? is
the gain medium linewidth, !a is the atomic transition
frequency, D0ð ~rÞ is the (possibly spatially varying) pump,
and �� � �2

?=½�2
? þ ð!� �!aÞ2� is the gain curve. The

effective pump Dð ~rÞ contains an infinite-order nonlinear
‘‘hole-burning’’ term, which gives rise to mode competi-
tion and gain saturation in a quantitatively precise manner.
These coupled, time-independent, nonlinear equations are
solved with the boundary condition of purely outgoing
waves with frequency !� at infinity; the solution algo-

rithm is discussed in Refs. [14,15,17].
From the solution to (3), we can compute an effective

self-consistent S matrix for any complex frequency !,
not just the discrete lasing frequencies !� [21]. By

definition, this S matrix has one or more poles on the
real-! axis, at ! ¼ !�. The S matrix can now be used

to study the effects of vacuum fluctuations and sponta-
neous emission. Let us suppose the cavity has scattering
channels indexed by j ¼ 1; 2; . . . ; N (the nature of these
scattering channels depends on the scattering geometry;
they could be waveguide modes or incoming and out-
going spherical waves, for example). The input and out-
put photon operators are denoted by a1; . . . ; aN and
b1; . . . ; bN respectively, and obey an ‘‘input-output’’ re-
lation [22,23]:

bið�Þ ¼ X
j

Sijð�Þajð�Þ þX
�

Vi�ð�Þdy�ð��Þ: (4)

Here the frequency � is measured from the classical
lasing frequency of interest, � � !�!0. The d�’s are

ladder operators for the external reservoirs corresponding
to the gain medium, with the index � denoting appro-
priate degrees of freedom in the cavity or reservoir. Note
that they enter with frequency ��; this prescription will
be needed to satisfy causality.
In order for a, b, and d to obey canonical commutation

relations, e.g., ½aið�Þ; ajð�0Þ� ¼ �ij�ð���0Þ, the S ma-

trix must be related to the reservoir coupling coefficients
by the fluctuation-dissipation relation [22]

SSy � VVy ¼ 1; (5)

where 1 is the N � N identity matrix. Next, we define

ajðtÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
Z

d�ajð�Þe�i�t (6)

and similarly for bjðtÞ and d�ðtÞ, describing quantum am-

plitudes for the field envelopes. Inserting into (4) gives

biðtÞ ¼
Z

dt0
�X

k

Z d�

2�
Sikð�Þe�i�ðt�t0Þ

�
akðt0Þ

þ
Z

dt0
�X

�

Z d�

2�
Vi�ð�Þe�i�ðt�t0Þ

�
dy�ðt0Þ: (7)

The first term describes scattering of input photons, and the
second describes emission from the gain medium.
S is strongly constrained by its symmetries. First, optical

reciprocity [24] implies that S can be written as a sym-
metric matrix, so it has the eigenvalue decomposition

S ¼ X
n

jc ni sn
hc �

njc ni hc
�
nj; (8)

where each jc ni denotes a right eigenvector of S with
eigenvalue sn, and hc �

nj denotes its unconjugated trans-
pose. These eigenvectors are biorthogonal (hc �

mjc ni ¼ 0
for m � n) and power normalized (hc njc ni ¼ 1).
Assume for convenience that the cavity dielectric func-

tion, �, is real, and that it has a resonance near !0. The S
matrix will be unitary and for a high-Q cavity [25] one of
its eigenvalues takes the approximate form:

s0ð�Þ � ei’ð�Þ�� i�c=2

�þ i�c=2
;

where ’ is an irrelevant phase factor and �c is the cavity
lifetime. Such an eigenvalue satisfies the conditions that for
real �, it is unimodular, and the requirement of time-
reversal symmetry, that the poles and zeros of the S matrix
lie at conjugate positions in the complex � plane. Adding
gain pushes the zero and pole up in the complex frequency
plane. The eigenvalue takes the form

s0ð�Þ � ei’
0ð�Þ �� i�z

�þ i�p

; (9)
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where �z and �p are the distances of the zero and pole from

the real axis. As �p ! 0�, the pole approaches the real

axis and the lasing threshold is reached; within the high-Q
approximation the eigenvalue takes the form (9) with
�z � �c (the zero moves up the same distance as the
pole). This approximation leads directly to the ST formula
(high Q will imply K � 1). For arbitrary Q, the S matrix
near � ¼ 0 takes the form (9), with a generalized residue
�Lð�Þ replacing �� i�z. Let us denote the eigenvector
corresponding to this diverging eigenvalue by �. In the S
matrix decomposition (8), the term with s0 dominates, so
we can write

S � j�i s0
h��j�i h�

�j: (10)

Using this together with Eq. (5) gives

VVy � j�i 1

j�T�j2
j�Lj2

�2 þ �2
p

h�j: (11)

This equation is satisfied by the ansatz

Vi� ¼ 1

�T
L�L

�L

�þ i�p

�i
Lu�; (12)

where u is some vector satisfying
P

�u
y
�u� ¼ 1, and�i

L, is

the ith component of the S-matrix eigenvector for the
lasing mode. Note that this relation applies not just to the
first lasing mode at threshold, but also for above-threshold
steady-state lasing modes, using the self-consistent, non-
linear S matrix obtained from SALT.

Inserting (12) into (7) and performing the resulting
contour integrations gives

biðtÞ ¼ � �L�
i
L

�T
L�L

Z t
dt0e��pðt�t0ÞFðt0Þ; (13)

FðtÞ � X
j

�LjajðtÞ þ i
X
�

u�d
y
�ðtÞ: (14)

As expected, an output photon at time t is a superposition
of incoming photon operators and reservoir operators from
all earlier times.

Above threshold, the gain medium undergoes stimulated
emission, and the laser field acquires a mean value. This
can be described by adding a nonvanishing classical term
�F alongside the input operator FðtÞ in Eq. (13), which is
modified to:

biðtÞ ¼ Bi � �L�
i
L

�T
L�L

Z t
dt0e��pðt�t0ÞFðt0Þ; (15)

where the complex number Bi is the steady-state classical
outgoing field amplitude in channel i of the mode emitting
at !0. It is related to �i

L by

jBij2 ¼ P

@!0

j�i
Lj2; (16)

where P is the total output power of the mode.
Due to the fluctuation operator FðtÞ, the phase of the

output field has a quantum uncertainty; the rate at which
this uncertainty increases with time gives the laser coher-
ence time scale. The fluctuation-induced phase changes are
fed back into the classical value of Bi, causing a random
drift in the phase of the laser field. We ignore this feedback,
instead taking a fixed value for Bi for all t. This is justifi-
able because the integrand in (15) vanishes exponentially
for t0 & �T, where T ¼ 1=�p will turn out to be the

coherence time. The calculations below apply to times
much shorter than T.
The global phase of the Bi’s is arbitrary, so we choose Bi

to be real and positive for a specific channel i. To study
quantum fluctuations of the phase, we introduce the
Hermitian quadrature operator [26]

	i ¼ iðbyi � biÞ
2Bi

: (17)

For small phase angles, this corresponds to the phase
of the laser output in channel i. Using (14) and (15),

we compute the quantity h	iðt1Þ	iðt2Þi, taking hai ¼ hdi ¼
hayi ðt1Þajðt2Þi ¼ 0 and taking the white noise correlator

hd�ðt1Þdy�ðt2Þi ¼ f�����ðt1 � t2Þ; (18)

where f� ¼ ½P2=ðP2 � P1Þ�� describes the local popula-

tion inversion [22]. The ‘‘zero-point’’ contributions to
h	iðt1Þ	iðt2Þi from the photon input and the gain medium
cancel exactly, leaving

h	iðt1Þ	iðt2Þi ¼ j�Lj2
j�T

L�Lj2
@!0

4�pP
e��pjt1�t2j �f; (19)

where P is the modal output power from Eq. (16), and

�f � X
�

f�ju�j2 (20)

is the inversion factor correction mentioned at the begin-
ning of this Letter.
The phase uncertainty accumulated over time �t is

h½	iðtþ�tÞ � 	iðtÞ�2i ¼ �!�tþOð�t2Þ, where

�! ¼ j�Lj2
j�T

L�Lj2
@!0

2P
�f � @!0�

2
L

2P
�f: (21)

This is our central result: a general linewidth formula in
which j�Lj2=j�T

L�Lj2 � �2
L replaces the quantity K�2

c in
the conventional Schawlow-Townes-Petermann linewidth
formula. We can think of �L as a generalized cavity decay
rate, which has been corrected for the presence of gain,
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openness, hole burning, and gain saturation. It is directly
calculable, ab initio and with no phenomenological pa-
rameters, from the nonlinear classical S matrix of SALT.
The lasing eigenvector is found by diagonalizing the S
matrix, and the crucial quantity, �L, is found by numeri-
cally integrating the eigenvalue around each lasing pole.
This formula only includes the contribution to the laser
linewidth from direct phase fluctuations; the indirect phase
fluctuations [3] have been omitted for simplicity.

The relation of the Petermann factor to the residue of the
lasing pole for a waveguide laser was emphasized early on
by Henry [6], and developed for more general cavities in an
S-matrix formulation by Schomerus et al. [27], but in both
cases for a single lasing mode at threshold, i.e., without
nonlinear effects. Goldberg, Milonni, and Sundaram [9]
gave an excellent and detailed analysis of the linewidth for
multimode lasing, including nonlinear effects, but using an
approach only applicable to one-dimensional cavities with
spatially uniform dielectric functions. To our knowledge,

our Eq. (21), combined with SALT, is unique in providing a
quantitative method for calculating the intrinsic laser line-
width in arbitrary cavities and pump profiles in the multi-
mode, nonlinear regime. Assuming steady-state multimode
lasing exists, the present theory makes no significant fur-
ther approximations, and hence it can be used to evaluate
the validity of the Schawlow-Townes-Petermann linewidth
formula [2].
We can connect Eq. (21) to previous results involving

quasimodes, such as Refs. [4,5,7], by examining the S
matrix of a passive cavity. A quasimode ’ðrÞ is a purely
outgoing solution to the wave equation for a passive cavity
with dielectric function �ðrÞ, at complex frequency !p,

where Imð!pÞ � ��c=2. Let� be the S-matrix eigenvec-

tor for this pole, normalized so that�y� ¼ 1, and let � be
the residue of the eigenvalue. It can be shown that [21]

Im

�
!2

p

Z
dr�ðrÞj’ðrÞj2

�
¼ �Re½!p�; (22)

Z
�ðrÞ’2ðrÞ ¼

�
i

�
� i

2!p

�
�T�: (23)

Here the spatial integrals are taken over the cavity. For real
�ðrÞ, and in the limit jkpj � �� �c, (22) and (23) give

j�j2
j�T�j2 �

��������
R
dr�ðrÞj’ðrÞj2R
dr�ðrÞ’ðrÞ2

��������
2

�2
c ¼ K�2

c: (24)

Thus, the conventional Petermann factor times �2
c is ap-

proximately equal to a quantity similar to �2
L, except that it

involves the eigenvalue residue and eigenvector of the
passive cavity S matrix. Note that both (24) and its active
cavity generalization in Ref. [11] do not include the effects
of dielectric dispersion, which can have a significant effect
on �L.

FIG. 1 (color online). Output power and cavity decay rates �2
L

for two uniformly pumped one-dimensional microcavity lasers.
A slab of gain material with background � ¼ 1:2, bounded on
the left by a perfect mirror and on the right by an � ¼ 9 slab (5%
of the total length) acting as a partially transmitting mirror (left
schematic). A random laser consisting of 50 slabs of gain
material, each with background � uniformly distributed in
½1; 1:2� (right schematic). Both systems exhibit two-mode lasing
at the high end of the pump range. Plots (a) and (b) show modal
output powers vs the normalized pump [15]. Plots (c) and (d)
show the square of the generalized cavity decay rate �2

L �
j�Lj2=j�T

L�Lj2 which determines the linewidths according to
Eq. (21). Solid and dashed curves denote modes 1 and 2,
respectively. The horizontal dotted lines show the conventional
result, K�2

c, computed from the passive cavity quasimodes,
which fails for the random laser.

FIG. 2 (color online). Laser linewidth vs inverse modal output
power 1=P, for the two lasers studied in Fig. 1. The linewidths
are computed using Eq. (21), assuming the inversion factor
�f ¼ 1. (a) The high-Q cavity laser linewidths show the standard
1=P dependence for both modes. (b) The linewidth of the first
mode of the random laser deviates strongly from the 1=P
Schawlow-Townes-Petermann dependence at lower pump val-
ues. At large pump values the linewidths of both mode 1 (solid
curve) and mode 2 (dashed curve) vary as 1=P, but with values
roughly half that of the standard STP prediction (dotted curve).
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Figure 1 compares �2
L to K�2

c for two one-dimensional
microcavity multimode lasers: a high-Q, uniform cavity
for which the two quantities agree rather well, and a low-Q
random laser, for which major deviations are found. In
particular, for the random laser, at pump strengths up to
four times threshold, �L for the first lasing mode depends
strongly on P, causing the overall power dependence to
depart substantially from the standard 1=P dependence
(Fig. 2). For higher pump strengths, �L is approximately
constant, but the conventional linewidth prefactor K�2

c

overestimates it by almost a factor of 2. In the standard
theory, the STP linewidth is a lower bound set by field
quantization, but insofar as it relies on passive cavity
quantities it is not a reliable bound. Analysis of our results
indicates that the deviation from the STP theory arises
from low cavity Q and from the frequency dispersion of
the dielectric constant of the gain medium, which signifi-
cantly reduces the residue of the lasing pole at threshold
compared to the passive cavity. We do not believe that the
apparent violation of the STP bound indicates any new
quantum fluctuation properties. In future work, our gener-
alized linewidth formula will allow such issues to be
studied systematically.
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[13] H. E. Türeci, A.D. Stone, and L. Ge, Phys. Rev. A 76,

013813 (2007).
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