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Determination of the Surface Corrugation Amplitude from Classical Atom Scattering
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The energy landscape of an atomic or molecular projectile interacting with a surface is often described
in terms of a corrugation function that gives the classical turning point as a function of position vector
parallel to the surface. It is shown here that the relative height variation of the corrugation function
for scattering of atoms under classical conditions can be determined by a measurement of the
maximum intensity in energy-resolved scattering spectra as a function of surface temperature. This is
demonstrated by developing a semiclassical quantum theory of atomic scattering from corrugated surfaces
and then extending the theory to the classical limit of large incident energies and high surface
temperatures. Comparisons of calculations with available data for Ar atom scattering determine the
corrugation amplitude for a molten In surface to be about 29% of the mean interparticle spacing in the

bulk liquid.
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Determining the surface energy landscape for the inter-
action of atoms or molecules with a surface is an important
first step for predicting the results of scattering measure-
ments as well as for predicting chemical reactions and
catalysis. The energy landscape is essentially the interac-
tion potential energy at the classical turning point plotted
as a function of displacement parallel to the surface. A
class of experiments that has been particularly successful
at determining energy landscapes is scattering of well-
defined beams of atoms from surfaces. Most such experi-
ments have been carried out using He atoms in the quantum
mechanical regime of low energies and target temperatures
[1,2] where, in the best of cases, remarkable precision can
be obtained. [3] However, much useful work has been done
using heavier rare gas atoms as projectiles with beam
velocities and target temperatures large enough that the
scattering becomes governed completely by classical me-
chanics [4].

The purpose of this Letter is to show that useful infor-
mation about the surface energy landscape, namely the
average corrugation amplitude, can be obtained through a
straightforward measurement of the temperature depen-
dence of the energy-resolved scattering spectra taken in
the classical regime.

In the classical mechanical regime, all quantum features
are suppressed and the energy-resolved spectra appear
typically as broad peaks characterized by a width that
increases with the square root of the surface temperature.
In the classical limit, the coherence of the surface structure
becomes less important and the energy-resolved spectra for
both ordered and amorphous surfaces appear similar,
although the structure of ordered surfaces can exhibit rain-
bow features [5-9].
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However, although energy-resolved spectra taken at
fixed angles in the classical regime give the appearance
of being insensitive to local surface structure, we would
like to point out that a measurement of the most probable
intensity of the typically observed inelastically broadened
structure can give a measure of the average corrugation
amplitude of the energy landscape. That this is the case is
readily observed by comparing two different theoretical
equations for the transition rate w(py, p;) describing dif-
ferential cross sections in the classical limit for scattering
of a projectile from the initial state of momentum p; to a
state of momentum p;. These two expressions represent
the extremes of a surface that is highly corrugated or one
that is regarded as being flat except for small time-
dependent thermal corrugations.

A highly corrugated surface is represented by the scat-
tering of a projectile of mass m by a collection of discrete
scattering centers of mass My that are initially moving
with an equilibrium distribution of velocities at tempera-
ture g [10,11]
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where AE, = (p; — p;)?/2My is the recoil energy in a
binary collision, kp is Boltzmann’s constant and 74, is a
transition matrix element determined by the interaction
potential.

When viewed as a function of final energy E; the
transition rate of Eq. (1) usually appears as a single-peaked
structure whose shape is dominated by the Gaussian-like
exponential. The temperature dependence of the width is
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largely due to the factor of 7g in the argument of this
exponential, which leads to an approximate /Ty depen-
dence on the full width at half maximum (FWHM) typical
of classical scattering. The most probable intensity occurs
when the argument of the exponential vanishes. Thus the
temperature dependence of the most probable intensity is
governed by the prefactor which goes as 1//T.

The transition rate for a surface having no static corru-
gation, but which undergoes small time-dependent thermal
displacements due to the underlying motions of the atoms
in the bulk is [12-14]

1

w(ppnp;) * s |74
P i) o AEy
E; — E; + AE))* + 2v%P?
X exp _EE o) S, (2)

where P is the component parallel to the surface of the
momentum transfer vector p = p; — p; and the parameter
vp having dimensions of speed is a weighted average over
the distribution of phonon velocities at the surface [12].
Equation (2) differs from Eq. (1) in that it has an added
Gaussian-like factor in P? and the envelope prefactor is
raised to the 3/2 power as opposed to the square root. For
most conditions, Eq. (2) is also a single-peaked function of
the final energy E; with the most probable intensity occur-
ring at the final energy E; corresponding to a minimum of
the argument of the exponential. The temperature depen-
dence of the most probable intensity will be approximately
that implied by the prefactor, which has the functional
dependence given by 1/ Tg/ 2 A temperature dependence

behaving very nearly as 1/ Tg/ ? has been verified in experi-
ments using the two different projectiles “He atoms and D,
molecules, both having similar mass, scattering under
classical conditions at hyperthermal energies from a clean
Cu(001) surface [15].

Comparison of the most probable intensities exhibited by
Egs. (1) and (2) shows that there is a very clear difference in
temperature dependence, with the intensity of a strongly
corrugated surface behaving as 1/ T;/ 2 while that of an
uncorrugated surface having the much stronger dependence

behaving approximately as 1/ Té/ 2 A logical conclusion is
|

that a moderately corrugated surface should exhibit a
temperature dependence somewhere between these two
extremes [16-18]. Consequently, a measurement of the
temperature dependence under conditions of most probable
intensity can be used to extract the strength of the corruga-
tion when experimental measurements are compared with
appropriate theory as we demonstrate in this Letter.

Although the expressions in Egs. (1) and (2) are classical
they are readily obtained by starting from fundamental
quantum mechanics and then taking the classical limit
of large numbers of phonon quanta exchanged [12,14].
Although the result can be obtained using several different
formalisms, a satisfactory starting point is the generalized
Fermi ‘““‘golden rule”

2
wiopp) = T (SITaloE - &) ®)
{’lf}

where T; is the transition matrix element taken between
final and initial states of the system of projectile plus target
surface, &; and & are the initial and final global energies of
the entire system, and # is Planck’s constant. The angular
brackets are an average over all initial states of the surface
and the Z{,,f} indicates a sum over all final states of the

target.

The transition matrix can be evaluated in the semiclas-
sical eikonal approximation for a strongly repulsive hard
wall barrier located at the position z = £(R), where £(R)
is the corrugation function [19,20]
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where Ap, is the component of p normal to the surface,
u(R, 1) is the displacement of the surface due to thermal
vibrations, and L? is the area of integration. The sum and
average over target states in Eq. (3) are carried out using
the Glauber—Van Hove transformation [21,22], which leads
to expressions involving the displacement-displacement
correlation function. The classical limit arises when the
recoil energy AE, is large, and in this limit the transition
rate becomes
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The leading terms in Eq. (5) are identical with the tran-
sition rate of Eq. (1), showing that if the displacement
correlations arising from the flat surface are ignored the
transition rate becomes that of Eq. (1) for a discrete

)

surface. Alternatively, if the corrugation function £(R) is
set equal to a constant in Eq. (5), corresponding to a flat
surface, then the spatial integrals become trivial and the
result is just that of Eq. (2) originally due to Brako and
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Newns [12]. The factors of py, are identified with the
transition matrix 7; of Eq. (2) in the hard repulsive wall
limit.

Equation (5) is an extension of the extreme limits of
expressions (1) and (2) and can be used to interpolate
between these for surfaces that are moderately corrugated,
and it is valid for periodic or amorphous surfaces. As an
example, Ar scattering from the amorphous molten metal
surface of In will be considered here because that is the
only experimental data available with full temperature-
dependent measurements [23,24].

For treating classical scattering, in which there is no
quantum mechanical interference arising from waves
reflected from different parts of the surface, the integrals
in Eq. (5) can be limited to a single typical scattering center
of the surface. For the corrugation describing the interac-
tion of an incoming Ar atom with liquid In we choose a
two-dimensional sinusoidal function

ER) = ha COS(Z%R) (6)

where a is chosen to be the average interatomic spacing in
the bulk liquid, R is the two-dimensional displacement
parallel to the surface and R is its magnitude which ranges
from zero to a/2. This leads to a corrugation profile for a
typical surface atom with a trough-to-crest height of 2Aa,
or a root mean square elevation of ha/~/2.

Figure 1 shows results of calculations with the transition
rate of Eq. (5) using the corrugation function of Eq. (6),
after conversion to the differential reflection coefficient.
The solid curve shows the most probable intensity plotted
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FIG. 1. Temperature dependence of the most probable inten-

sity for a 42 kJ/mol incident beam of Ar scattering from molten
In with ; = 6, = 55°. The solid curve is the present calcula-
tion, the dashed curve is the result for a highly corrugated
surface, and the dotted curve is the result for an uncorrugated
surface. The data points are from Nathanson et al. [24].

as a function of surface temperature 7. The open circle
points are the experimental data for in-plane Ar scattering
from In with the incident and detector angles equal to 55°
from the normal and an incident energy of 42 kJ/mol
(0.44 eV). Also shown as a dashed curve is the 1//Ts
behavior of the discrete surface expression of Eq. (1) and

as a dotted curve the nearly 1/ TE/ 2 behavior of the smooth
surface expression of Eq. (2). The value of vy is chosen to
be 450 m/s, the same value obtained from an analysis of
this data using the smooth surface model of Eq. (2) [25].

A least-squares fit of the calculations to the data points
gives a corrugation factor h = 0.29, which for the In
interatomic distance of a = 3.14 A gives a corrugation
amplitude ha = 0.91 A for a typical In atom at the liquid
surface. The rms deviation of the fit is 0.0047, which
implies that the standard deviation uncertainty in the am-
plitude £ is less than 3%.

Although the ability to extract the corrugation parameter
from a simple measurement of the most probable scat-
tered intensity as a function of surface temperature is the
important result of this Letter, in order to make this
result convincing the same theory must explain all avail-
able data. This is shown in Figs. 2—4, which exhibit an
energy-resolved spectrum and energy-integrated angular
distributions.

Figure 2 shows the energy-resolved intensity spectrum
as a function of E, from which the intensity point at
Ty = 436 K in Fig. 1 was obtained. The dotted curve is
the single-scattering calculation using Eq. (6). The dashed
curve is the contribution from double scattering arising
from a ring of six In atoms in the surface plane surrounding
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FIG. 2. Energy-resolved intensity for Ar scattering from liquid
In at a temperature of Tg =436 K, with E; = 42 kJ/mol,
0; = 6, = 55°. The dotted curve is the single scattering con-
tribution, the dashed curve is the double scattering contribution,
and the solid curve is the sum of the two. Data are from
Nathanson et al. [24].
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FIG. 3. In-plane angular distribution for Ar/In with
Tg =436 K, E; = 42 kJ/mol and 6; = 55°. The data points
are from Nathanson ef al. [24].

the initial In atom at the average interparticle spacing, i.e.,
in a close packing arrangement [25]. Both the single scat-
tering and single plus double scattering curves explain the
experimental data well, but the double scattering contribu-
tion shows that the small shoulder feature at low E; comes
primarily from double backward scattering contributions,
in which the Ar initially scatters backward from the initial
In atom and then is scattered again forward into the final
detector angle by a second In atom located in the region
behind the first one.

Figure 3 shows a typical angular distribution measure-
ment taken at an incident energy of 42 kJ/mol and with an
incident angle #; = 55°. Angular distributions are taken
with a fixed incident angle (and the detector is at the
variable angle 6) and measure all particles regardless of
energy. The calculation using the corrugation function of
Eq. (6) with & = 0.29 is shown as a solid curve. Also
shown as a dotted curve in Fig. 3 is the smooth uncorru-
gated surface calculation using Eq. (2). The two calcula-
tions are quite similar, and both give a good interpretation
of the experimental data shown as open circles. This illus-
trates a general behavior, namely, that the corrugated and
uncorrugated theories give very similar shapes for the
scattered spectra, since for this system they are largely
dictated by phonon transfer, and that the information on
the nature of the corrugation comes from examining the
temperature dependence of the scattered spectra.

Figure 4 compares calculations with measurements for
the out-of-plane angular distribution. The out-of-plane ex-
periments were taken with the incident and final polar
angles fixed at 55° and the intensities were taken at angles
a measured perpendicularly to the sagittal scattering plane
[23]. As in Fig. 3, the solid curve is the calculation for the
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FIG. 4. Out-of-plane  angular distribution Ar/In  with
Ty =436 K, E; =42kJ/mol and 6; = §, = 55°. The data
points are from Nathanson et al. [23].

corrugated surface using Eq. (5) and the dotted curve is for
the uncorrugated surface using Eq. (2).

However, in addition to explaining all available data, as
well as providing a method for extracting important infor-
mation about the corrugation height, the theory developed
here can answer a very fundamental question in the field of
molecular beams scattering from surfaces. This is the
question of the importance of inelastic phonon transfer
relative to that of surface corrugation in forming the angu-
lar widths of the scattered distributions. Two quite different
theoretical approaches seem to indicate that both phonons
and corrugation can explain the rather large angular widths
over which molecular beams can be scattered under clas-
sical conditions. The Tully [26] washboard model has been
used extensively for interpreting a large amount of experi-
mental data, and has often been shown to describe the
angular spread of angular distributions in spite of the fact
that it does not include a mechanism for energy transfer
with the surface. Theories containing energy exchange
with large numbers of phonons based on the Brako-
Newns approach for a flat and uncorrugated surface similar
to that of Eq. (2) have also been shown to quantitatively
explain the widths of angular distributions [25]. The theory
and calculations carried out here indicate that static corru-
gations as well as energy and momentum transfer through
phonon exchange can contribute equally to similar angular
spreads in the measured angular distributions. For ex-
ample, in the case of Ar scattering from molten In, it is
found that the corrugation effects and phonon energy trans-
fers scatter the Ar atoms over a very similar range of final
angles. This work indicates that to separate and categorize
the importance of the two contributions will require exten-
sive comparisons of experimental measurements with
theory. However, important information on the average
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corrugation height of the surface can be obtained from
relatively simple measurements, such as the most probable
intensity of the energy-resolved spectra. Furthermore,
since this information is obtained from experiments carried
out in the classical mechanical domain where there is no
quantum mechanical interference, this conclusion holds
equally well for an ordered periodic surface as for the
disordered molten metal surfaces considered as illustrative
examples here.

(1]
(2]

(31

(4]

(5]
(6]

(7]
(8]

* Wayne.Hayes @gvltec.edu

fjmanson@clemson.edu

G. Benedek and J.P. Toennies, Surf. Sci. 299-300, 587
(1994).

G. Benedek, M. Bernasconi, V. Chis, E. Chulkov, P. M.
Echenique, B. Hellsing, and J.P. Toennies, J. Phys.
Condens. Matter 22, 084020 (2010).
A.P. Jardine, S. Dworski, P. Fouquet, G. Alexandrowicz,
D.J. Riley, G. Y. H. Lee, J. Ellis, and W. Allison, Science
304, 1790 (2004).

J. A. Barker and D.J. Auerbach, Faraday Discuss. Chem.
Soc. 80, 277 (1985).
A.W.Kleyn and T. C. M. Horn, Phys. Rep. 199, 191 (1991).
E. Pollak and S. Miret-Artés, J. Chem. Phys. 130, 194710
(2009).
E. Pollak, J. M. Moix, and S. Miret-Artés, Phys. Rev. B80,
165420 (2009).
E. Pollak, S. Sengupta, and S. Miret-Artés, J. Chem. Phys.
129, 054107 (2008).

(91
(10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]

[18]
[19]
[20]
(21]

(22]
(23]

063203-5

J.M. Moix, E. Pollak, and S. Miret-Artés, Phys. Rev. Lett.
104, 116103 (2010).

A. Sjolander, Ark. Fys. 14, 315 (1959).

D. A. Micha, J. Chem. Phys. 74, 2054 (1981).

R. Brako and D.M. Newns, Phys. Rev. Lett. 48, 1859
(1982); R. Brako and D.M. Newns, Surf. Sci. 117, 42
(1982).

H.-D. Meyer and R.D. Levine, Chem. Phys. 85, 189
(1984).

J.R. Manson, V. Celli, and D. Himes, Phys. Rev. B 49,
2782 (1994).

M. F. Bertino, J.R. Manson, and W. Silvestri, J. Chem.
Phys. 108, 10239 (1998).

J.R. Manson, Phys. Rev. B 58, 2253 (1998).

W.W. Hayes and J.R. Manson, J. Phys. Condens.
Matter23, 484003 (2011).

E. Pollak and J.R. Manson, J. Phys. Condens. Matter 24,
104001 (2012).

U. Garibaldi, A.C. Levi, R. Spadacini, and G. Tommei,
Surf. Sci. 48, 649 (1975).

V. Bortolani and A.C. Levi, Riv. Nuovo Cimento 9, 1
(1986).

R. Glauber, Phys. Rev. 98, 1692 (1955).

L. Van Hove, Phys. Rev. 95, 249 (1954).
M. Manning, J.A. Morgan, D.J. Castro, and
G.M. Nathanson, J. Chem. Phys. 119, 12593

(2003).

W.R. Ronk, D.V. Kowalski, M. Manning, and G.
Nathanson, J. Chem. Phys. 104, 4842 (1996).

W.W. Hayes and J.R. Manson, J. Chem. Phys. 127,
164714 (2007).

J. C. Tully, J. Chem. Phys. 92, 680 (1990).


http://dx.doi.org/10.1016/0039-6028(94)90683-1
http://dx.doi.org/10.1016/0039-6028(94)90683-1
http://dx.doi.org/10.1088/0953-8984/22/8/084020
http://dx.doi.org/10.1088/0953-8984/22/8/084020
http://dx.doi.org/10.1126/science.1098490
http://dx.doi.org/10.1126/science.1098490
http://dx.doi.org/10.1039/dc9858000277
http://dx.doi.org/10.1039/dc9858000277
http://dx.doi.org/10.1016/0370-1573(91)90032-H
http://dx.doi.org/10.1063/1.3131182
http://dx.doi.org/10.1063/1.3131182
http://dx.doi.org/10.1103/PhysRevB.80.165420
http://dx.doi.org/10.1103/PhysRevB.80.165420
http://dx.doi.org/10.1063/1.2954020
http://dx.doi.org/10.1063/1.2954020
http://dx.doi.org/10.1103/PhysRevLett.104.116103
http://dx.doi.org/10.1103/PhysRevLett.104.116103
http://dx.doi.org/10.1063/1.441251
http://dx.doi.org/10.1103/PhysRevLett.48.1859
http://dx.doi.org/10.1103/PhysRevLett.48.1859
http://dx.doi.org/10.1016/0039-6028(82)90483-6
http://dx.doi.org/10.1016/0039-6028(82)90483-6
http://dx.doi.org/10.1016/0301-0104(84)85032-6
http://dx.doi.org/10.1016/0301-0104(84)85032-6
http://dx.doi.org/10.1103/PhysRevB.49.2782
http://dx.doi.org/10.1103/PhysRevB.49.2782
http://dx.doi.org/10.1063/1.476484
http://dx.doi.org/10.1063/1.476484
http://dx.doi.org/10.1103/PhysRevB.58.2253
http://dx.doi.org/10.1088/0953-8984/23/48/484003
http://dx.doi.org/10.1088/0953-8984/23/48/484003
http://dx.doi.org/10.1088/0953-8984/24/10/104001
http://dx.doi.org/10.1088/0953-8984/24/10/104001
http://dx.doi.org/10.1016/0039-6028(75)90434-3
http://dx.doi.org/10.1007/BF02724478
http://dx.doi.org/10.1007/BF02724478
http://dx.doi.org/10.1103/PhysRev.98.1692
http://dx.doi.org/10.1103/PhysRev.95.249
http://dx.doi.org/10.1063/1.1625636
http://dx.doi.org/10.1063/1.1625636
http://dx.doi.org/10.1063/1.471152
http://dx.doi.org/10.1063/1.2786073
http://dx.doi.org/10.1063/1.2786073
http://dx.doi.org/10.1063/1.458421

