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Quantum vortices in the color-flavor locked phase of QCD have bosonic degrees of freedom, called the

orientational zero modes, localized on them. We show that the orientational zero modes are electro-

magnetically charged. As a result, a vortex in the color-flavor locked phase nontrivially interacts with

photons. We show that a lattice of vortices acts as a polarizer of photons with wavelengths larger than

some critical length.
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Introduction.—The strong interaction, which is one of
the fundamental forces in nature, is fully described by
quantum chromodynamics (QCD). QCD matter shows a
rich variety of phenomena at finite temperatures and/or
baryon densities [1], and the determination of the phase
diagram has been a topic of considerable interest in high-
energy physics. Quark matter is expected to exhibit color
superconductivity, triggered by quark-quark pairings, at
high baryon densities and low temperatures [2,3]. It has
been reported in Ref. [2] that the ground state is the color-
flavor locked (CFL) phase at very high densities, in which
the three light flavors (up, down, and strange) of quarks
contribute to the pairing symmetrically. The CFL matter is
both a superfluid and a color superconductor because of the
spontaneous breaking of the global Uð1ÞB baryon number
symmetry and the local SUð3ÞC color symmetry, respec-
tively. It is expected to exist in the cores of dense stars,
although observational evidence has been elusive.

The purpose of this Letter is to propose a possible
observational signal of the CFL matter. The key ingre-
dients are the topological vortices. These vortices are
created under rotation owing to the superfluidity of the
CFL matter [4,5]. If the CFL phase is realized in the cores
of dense stars, the creation of vortices is inevitable since
the stars rotate rapidly. The superfluid vortices discussed in
Refs. [4,5] were found to be dynamically unstable, decay-
ing into sets of constituent vortices [6]. The stable ones are
the so-called non-Abelian vortices, which are superfluid
vortices as well as color magnetic flux tubes [7]. Their
properties have been studied using the Ginzburg-Landau
theory [6,8–13] or the Bogoliubov–de Gennes equation
[14]. Interestingly, there are fermionic and bosonic degrees
of freedom localized on a vortex. Non-Abelian vortices are
endowed with a novel kind of non-Abelian statistics be-
cause of the multiple fermion zero modes trapped inside
them [15]. On the other hand, the bosonic degrees of free-
dom are called the orientational zero modes [6,11,13],

which are the Nambu-Goldstone (NG) bosons that are
associated with the symmetry breaking inside vortices.
In this Letter, we investigate the electromagnetic

properties of non-Abelian vortices in the CFL phase.
Although the CFL matter itself is electromagnetically neu-
tral, the orientational zero modes are naturally charged, as
is discussed later. The electromagnetic property of vortices
can be phenomenologically important as it may lead to
some observable effects. As an illustration of such an
effect, we show that a lattice of vortices in the CFL phase
acts as a polarizer of photons. The rotating CFL matter
should be threaded with quantum vortices along the axis of
rotation, which results in the formation of a vortex lattice
[6,9,10], as in the case of rotating atomic superfluids.
Suppose that a linearly polarized photon is incident on a
vortex lattice (see Fig. 1). When the electric field of the
photon is parallel to the vortices, it induces currents
along the vortices, resulting in the attenuation of the
photon; on the other hand, waves with electric fields per-
pendicular to the vortices are not affected. This is exactly
what a polarizer does. A lattice passes electromagnetic
waves of a specific polarization and blocks waves of other
polarizations. This phenomenon, resulting from the elec-
tromagnetic interaction of vortices, may be useful in find-
ing observational evidence for the existence of the CFL
matter.
In the present analysis, we neglect the mixing of photons

and gluons. The gauge field, A0
�, which remains massless

in the CFL phase, is a mixture of the photon A� and a part

of gluons A8
�, A

0
� ¼ � sin�A� þ cos�A8

�. Here, the mix-

ing angle � is given by tan� ¼ ffiffiffi
3

p
g=2e [2], where g and e

are the strong and electromagnetic coupling constants. At
accessible densities (�� 1 GeV), the fraction of the pho-
ton is given by sin� � 0:999, and so, the massless field A0

�

consists mostly of the ordinary photon and includes a small
amount of the gluon. As a first approximation, we neglect
the mixing of the gluon to the massless field.
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Orientational zero modes.—The color superconductivity
is brought about by the condensation of diquarks. At very
high densities, the ground state is believed to be the CFL
phase, which is characterized by the spinless and positive
parity condensates of the form

�a
i ¼ �abc�ijkhðqTÞjbC�5ðqÞkci ¼ ��a

i ; (1)

where q is the quark field, i; j; k ¼ u; d; s (a; b; c ¼ r; g; b)
are the flavor (color) indices, C is the charge conjugation
matrix, � is a BCS gap function, and the transpose is
employed with respect to the spinor index. The symmetry
breaking pattern is, apart from discrete symmetry,

SUð3ÞC � SUð3ÞR � SUð3ÞL �Uð1ÞB
! SUð3ÞCþRþL � SUð3ÞCþF; (2)

where SUð3ÞC is the color symmetry, SUð3ÞRðLÞ is right

(left) flavor symmetry, and Uð1ÞB is the symmetry associ-
ated with the baryon number conservation. The ground
state is invariant under the simultaneous rotation of
color and flavor; thus, it is called the color-flavor locked
phase. In the presence of a vortex, the color-flavor
locked symmetry, SUð3ÞCþF, is further broken down to
SUð2ÞCþF �Uð1ÞCþF around the core of the vortex.
Consequently, there appear NG modes confined in the
core of the vortex, which parametrize the coset space known
as the two-dimensional complex projective space [6,11],

SUð3ÞCþF

SUð2Þ �Uð1Þ ’ CP2: (3)

There exist classically degenerate vortex solutions,
characterized by the value of CP2 orientational moduli.
We denote the NG modes by a complex three-component

vector � 2 CP2, which satisfies �y� ¼ 1. When we
neglect the electromagnetic interaction, the low energy
effective theory on the vortex which is placed along the
z axis is shown to be described by the following CP2

nonlinear sigma model [11],

LCP2 ¼ C
X

�¼0;3

K�½@��y@��þ ð�y@��Þð�y@��Þ�; (4)

where the orientational moduli � are promoted to dynami-
cal fields, and C andK� are numerical constants. Under the
color-flavor locked transformation, the CP2 fields � trans-
form as

� ! U�; (5)

with U 2 SUð3ÞCþF.
Now, let us consider the electromagnetic fields. The

electromagnetic Uð1ÞEM group is a subgroup of the flavor
group SUð3ÞF, which is generated by T8 ¼
1ffiffi
6

p diagð�2; 1; 1Þ in our choice basis. The electromagnetic

interaction is incorporated by gauging the corresponding
symmetry. Therefore, the low-energy effective action on
the vortex should be modified to the gauged CP2 model,

LgCP2 ¼ C
X

�¼0;3

K�½D��yD��þ ð�yD��Þð�yD��Þ�;

(6)

where the covariant derivative is defined by

D �� ¼ ð@� � ie
ffiffiffi
6

p
A�T8Þ�: (7)

Photon-vortex scattering.—Here, we investigate the
consequence of the charged degrees of freedom on the
vortex. The low-energy behavior is described by photons
propagating in three-dimensional space and the CP2

model localized on the vortex. Hence, the effective action
is given by

S ¼ � 1

4

Z
F��F

��d4xþ
Z

LgCP2dzdt: (8)

Let us consider the scattering of photons by a vortex.
The equation of motion of the gauge fields derived from the
effective action is given as

@�F�� ¼ �CK�ie
ffiffiffi
6

p
�ðx?Þð�0� þ �3�Þf�yT8D��

� ðD��ÞyT8�� 2�yD���yT8�g; (9)

where �ðx?Þ � �ðxÞ�ðyÞ is the transverse delta function.
We consider the situation where a linearly polarized pho-
ton is normally incident on the vortex and assume that the
electric field of the photon is parallel to the vortex. Then,
the problem is z-independent and we can set 	 ¼ 	ðtÞ,
At ¼ Ax ¼ Ay ¼ 0, and Az ¼ Azðt; x; yÞ. The equation of

motion can be rewritten as

FIG. 1 (color online). Schematic figure of two linearly polar-
ized photons entering a vortex lattice. The big arrow represents
the propagating direction. The small arrows indicate the electric
field vector. The waves whose electric fields are parallel to the
vortices are attenuated, while the ones with perpendicular elec-
tric fields are not affected.
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ð@2t � @2x � @2yÞAzðt; x; yÞ
¼ 12CK3e

2f�yðT8Þ2�þ ð�yT8�Þ2gAzðt; x; yÞ�ðx?Þ
� 12CK3e

2fð�ÞAzðt; x; yÞ�ðx?Þ; (10)

where we have defined

fð�Þ � �yðT8Þ2�þ ð�yT8�Þ2: (11)

Equation (10) is the same as the one treated by Witten in
the context of superconducting strings [16] except for the
orientation-dependent factor, fð�Þ. The cross section per
unit length, d
=dz, can be calculated by solving the scat-
tering problem, as in Ref. [16],

d


dz
¼ ½12CK3e

2fð�Þ�2�2

8�
 ¼ 288�½CK3��fð�Þ�2;

(12)

where  is the wavelength of the incident photon, � is a
numerical factor of order unity, and �, the fine structure
constant. On the other hand, if the electric field of the wave
is perpendicular to the vortex, the photon is not scattered
since current can flow only along the vortex.

Vortex lattice as a polarizer.—Now let us consider the
case where electromagnetic waves of some intensity nor-
mally enter the vortex lattice. We consider the electric
fields of the waves to be parallel to the vortices. These
waves are scattered by the vortices and lose intensity. The
fraction of the loss of intensity when the wave passes
through the lattice for distance dx is�

d


dz

�
nvdx � dx

L
; (13)

where nv is the number of vortices per unit area. Here, L is
defined by

L � 1=

�
nv

�
d


dz

��
¼ ‘2=

�
d


dz

�
; (14)

with the inter-vortex spacing ‘. As the cross section de-
pends on the internal state (value of ’) of the vortex, we
have introduced the averaged scattering cross section
hd
=dzi over the ensemble of the vortices. Let us denote
the intensity of waves at distance x from the surface of the
lattice as IðxÞ. IðxÞ satisfies

Iðxþ dxÞ
IðxÞ ¼ 1� dx

L
: (15)

Therefore, the x dependence of IðxÞ is characterized by the
following differential equation

I0ðxÞ
IðxÞ ¼ � 1

L
: (16)

This equation is immediately solved as IðxÞ ¼ I0e
�x=L,

where I0 is the initial intensity. Hence, the waves are
attenuated with the characteristic length L.

We can obtain a rough estimate of the attenuation length.
The total number of vortices can be estimated, as in
Ref. [5], as

Nv ’ 1:9� 1019
�
1 ms

Prot

��
�=3

300 MeV

��
R

10 km

�
2
; (17)

where Prot is the rotation period; �, the baryon chemical
potential; and R, the radius of the CFL matter inside dense
stars. These quantities are normalized by typical values.
The intervortex spacing is given by

‘ �
�
�R2

Nv

�
1=2 ’ 4:0� 10�6 m

�
Prot

1ms

�
1=2

�
300 MeV

�=3

�
1=2

:

(18)

Therefore, the characteristic decay length of the electro-
magnetic waves is roughly estimated as

L ¼ ‘2

288�ðCK3��Þ2hfð�Þ2i ’ 6:5� 10�12 m2


; (19)

where, we have assumed that the variable � is randomly
distributed in the CP2 space. This assumption is natural as
there is no particularly favored direction in the CP2 space
for the case with three massless flavors [17,19]. We have
also taken � ¼ 1, � ¼ 900 MeV and � ¼ 100 MeV,
from which the values of C and K3 are determined accord-
ingly [12]. If we adopt the value of R� 1 km for the radius
of the CFL core, the condition that the intensity is signifi-
cantly decreased within the core is written as L � 1 km.
This condition can be rewritten in terms of the wavelength
of the photon as

 � 6:5� 10�15 m � c: (20)

Therefore, a lattice of vortices serves as a wavelength-
dependent filter of photons. It filters out the waves with
electric fields parallel to the vortices if the wavelength  is
larger than c. The waves that pass through the lattice are
the linearly polarized ones with the direction of their
electric fields perpendicular to the vortices, as schemati-
cally shown in Fig. 1.
One may wonder why a vortex lattice with mean vortex

distance ‘ can serve as a polarizer for photons with wave-
length many-orders smaller than ‘. It is true the probability
that a photon is scattered during its propagation for a small
distance (� ‘, for example) is small. However, while the
photon travel through the lattice, the scattering probability
is accumulated and the probability that a photon remains
unscattered decreases exponentially. Namely, the small
scattering probability is compensated by the large number
of vortices through which a photon passes. This is why the
vortex mean distance and the wavelength of the attenuated
photons can be different.
Conclusion.—We have shown that a quantum vortex in

the CFL phase interacts with photons because of the CP2

mode on the vortex. We have demonstrated that, as a

PRL 109, 062501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

10 AUGUST 2012

062501-3



consequence, photons with electric fields parallel to the
vortices are attenuated in a vortex lattice. This effect would
be observable if there exist quark stars in which the CFL
phase continues from the core to the surface. However, if
the CFL core is covered with a nuclear mantle, it would be
difficult for optical probes to penetrate the surface of the
star. Even in that case, we expect that the electromagnetic
properties of vortices could be useful in finding observa-
tional evidence of CFL matter, for example through the
electromagnetic interaction of vortices with strong mag-
netic fields in neutron stars.

Y. H. is supported by the Japan Society for the
Promotion of Science for Young Scientists. M.N. is sup-
ported in part by Grants-in-Aid for Scientific Research
(No. 23103515 and No. 23740198) from the Ministry of
Education, Culture, Sports, Science and Technology,
Japan.

*hirono@nt.phys.s.u-tokyo.ac.jp
†nitta@phys-h.keio.ac.jp

[1] For a recent review, see K. Fukushima and T. Hatsuda,
Rept. Prog. Phys. 74, 014001 (2011).

[2] M.G. Alford, K. Rajagopal, and F. Wilczek, Nucl. Phys.
B537, 443 (1999).

[3] M.G. Alford, A. Schmitt, K. Rajagopal, and T. Schafer,
Rev. Mod. Phys. 80, 1455 (2008).

[4] M.M. Forbes and A. R. Zhitnitsky, Phys. Rev. D 65,
085009 (2002).

[5] K. Iida and G. Baym, Phys. Rev. D 66, 014015 (2002).
[6] E. Nakano, M. Nitta, and T. Matsuura, Phys. Rev. D 78,

045002 (2008); Phys. Lett. B 672, 61 (2009); Prog. Theor.
Phys. Suppl. 174, 254 (2008).

[7] A. P. Balachandran, S. Digal, and T. Matsuura, Phys. Rev.
D 73, 074009 (2006).

[8] M. Eto and M. Nitta, Phys. Rev. D 80, 125007 (2009).
[9] D.M. Sedrakian, K.M. Shahabasyan, D. Blaschke, and

K.M. Shahabasyan, Astrophysics (Engl. Transl.) 51, 544
(2008).

[10] M.K. Shahabasyan, Astrophysics (Engl. Transl.) 52, 151
(2009).

[11] M. Eto, E. Nakano, and M. Nitta, Phys. Rev. D 80, 125011
(2009).

[12] M. Eto, M. Nitta, and N. Yamamoto, Phys. Rev. Lett. 104,
161601 (2010).

[13] Y. Hirono, T. Kanazawa, and M. Nitta, Phys. Rev. D 83,
085018 (2011).

[14] S. Yasui, K. Itakura, and M. Nitta, Phys. Rev. D 81,
105003 (2010);T. Fujiwara, T. Fukui, M. Nitta, and S.

Yasui, Phys. Rev. D 84, 076002 (2011);Y. Nishida, Phys.

Rev. D 81, 074004 (2010).
[15] S. Yasui, K. Itakura, and M. Nitta, Phys. Rev. B 83,

134518 (2011);Nucl. Phys. B859, 261 (2012);

Y. Hirono, S. Yasui, K. Itakura, and M. Nitta, Phys. Rev.

B 86, 014508 (2012).
[16] E. Witten, Nucl. Phys. B249, 557 (1985).
[17] The potential quantum mechanically induced in the CP2

model is of an exponentially soft scale �exp½�cð�=�Þ2�
with the baryon chemical potential � [18], which can be

neglected at asymptotically high densities.
[18] M. Eto, M. Nitta, and N. Yamamoto, Phys. Rev. D 83,

085005 (2011);A. Gorsky, M. Shifman, and A. Yung,

Phys. Rev. D 83, 085027 (2011).
[19] The presence of a finite strange quark mass does not

change the qualitative feature of the polarizing phenome-

non. The strange quark mass gives rise to a potential in the

effective model, as discussed in Ref. [12]. When ms is

larger than the typical kinetic energy of the CP2 modes,

which is given by the temperature T � Tc � 101 MeV,
and is small enough so that the description by the

Ginzburg-Landau theory based on the chiral symmetry

is still valid, the orientation of vortices falls into

�T
0 ¼ ð0; 1; 0Þ. This assumption is valid for the realistic

value of ms � 102 MeV. The orientation dependence of

the cross section is encapsulated in the function fð�Þ
defined in Eq. (11). Since fð�0Þ ¼ 1=3 � 0, photons still
interact with the vortex in the presence of a finite strange

quark mass. Assuming that all the vortices are with the

orientation �0, we can redo the numerical estimates as

follows. The decay length of the photon intensity is

recalculated to be L� ð1:2� 10�11 m2Þ=, instead of

Eq. (19), and the condition that the intensity of photons

is significantly decreased within the CFL core of order

1 km is given by  � 1:2� 10�14 m, instead of Eq. (20).

PRL 109, 062501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

10 AUGUST 2012

062501-4

http://dx.doi.org/10.1088/0034-4885/74/1/014001
http://dx.doi.org/10.1016/S0550-3213(98)00668-3
http://dx.doi.org/10.1016/S0550-3213(98)00668-3
http://dx.doi.org/10.1103/RevModPhys.80.1455
http://dx.doi.org/10.1103/PhysRevD.65.085009
http://dx.doi.org/10.1103/PhysRevD.65.085009
http://dx.doi.org/10.1103/PhysRevD.66.014015
http://dx.doi.org/10.1103/PhysRevD.78.045002
http://dx.doi.org/10.1103/PhysRevD.78.045002
http://dx.doi.org/10.1016/j.physletb.2008.11.049
http://dx.doi.org/10.1143/PTPS.174.254
http://dx.doi.org/10.1143/PTPS.174.254
http://dx.doi.org/10.1103/PhysRevD.73.074009
http://dx.doi.org/10.1103/PhysRevD.73.074009
http://dx.doi.org/10.1103/PhysRevD.80.125007
http://dx.doi.org/10.1007/s10511-008-9037-1
http://dx.doi.org/10.1007/s10511-008-9037-1
http://dx.doi.org/10.1007/s10511-009-9044-x
http://dx.doi.org/10.1007/s10511-009-9044-x
http://dx.doi.org/10.1103/PhysRevD.80.125011
http://dx.doi.org/10.1103/PhysRevD.80.125011
http://dx.doi.org/10.1103/PhysRevLett.104.161601
http://dx.doi.org/10.1103/PhysRevLett.104.161601
http://dx.doi.org/10.1103/PhysRevD.83.085018
http://dx.doi.org/10.1103/PhysRevD.83.085018
http://dx.doi.org/10.1103/PhysRevD.81.105003
http://dx.doi.org/10.1103/PhysRevD.81.105003
http://dx.doi.org/10.1103/PhysRevD.84.076002
http://dx.doi.org/10.1103/PhysRevD.81.074004
http://dx.doi.org/10.1103/PhysRevD.81.074004
http://dx.doi.org/10.1103/PhysRevB.83.134518
http://dx.doi.org/10.1103/PhysRevB.83.134518
http://dx.doi.org/10.1016/j.nuclphysb.2012.02.007
http://dx.doi.org/10.1103/PhysRevB.86.014508
http://dx.doi.org/10.1103/PhysRevB.86.014508
http://dx.doi.org/10.1016/0550-3213(85)90022-7
http://dx.doi.org/10.1103/PhysRevD.83.085005
http://dx.doi.org/10.1103/PhysRevD.83.085005
http://dx.doi.org/10.1103/PhysRevD.83.085027

