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The issue of chiral extrapolations in heavy quarkonium systems is discussed. We show that the light

quark mass dependence of the properties of heavy quarkonia is not always suppressed. For quarkonia

close to an open flavor threshold, even a nonanalytic chiral extrapolation is needed. Both these nontrivial

facts are demonstrated to appear in the decay widths of the hindered M1 transitions between the first

radially excited and ground state P-wave charmonia. The results at a pion mass of about 500 MeV could

deviate from the value at the physical pion mass by a factor of two. Our findings show the necessity of

performing chiral extrapolations for lattice simulations of heavy quarkonium systems. Furthermore, lattice

calculations of these transitions would also provide a definite answer to the role of coupled-channel effects

in heavy quarkonium physics due to virtual heavy mesons.
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Since the discovery of J=c , the physics of heavy quark-
onium is an important tool for testing QCD. Because both
the charmand bottomquarkmasses aremuch larger than the
nonperturbative scale �QCD, heavy quarkonia were well

described in the framework of potential models. However,
in recent years this simple picture has been shattered, as
quite a few charmonium states close to or above the open
charm thresholds were discovered, and many of their prop-
erties are not expected from the potential models. For a
recent comprehensive review, see Ref. [1]. The spectrum of
heavyquarkoniumhas been intensively studied using lattice
simulations, using the quenched approximation in the early
stages, and in full QCD in recent years; for example, see
Refs. [2–9]. While most of the calculations focus on the
low-lying states, which we refer to as the states below
open heavy flavor thresholds, only a few calculations tackle
the problem of higher excited states [8–10]. So far, all
calculations of heavy quarkonium in full QCD are per-
formed at light quarkmasses larger than the physical values,
or equivalently with unphysical pion masses. The simula-
tions in Ref. [9] are only performed at a single pion mass
M� ¼ 396 MeV. Mixing of charmonia with pairs of open
charm states are taken into account in Ref. [8] at three
different pion masses ranging from 1 GeV down to
280 MeV, yet no chiral extrapolation to the physical pion
masswas performed. In addition to the spectrum, there have
also been lattice simulations of the charmonium [11,12] and
bottomonium radiative transitions [13]. The quenched ap-
proximation is used in Ref. [11], and the calculations of
Ref. [12] were performed at M� ¼ 485 MeV.

Being bound states of a heavy quark and heavy antiquark,
heavy quarkonia do not contain any valence light quark.
Thus, one would naively expect that the light quark mass
dependence of their properties would be suppressed, so that

one can use a simple linear formula in the light quarkmasses
[remember for example that M2

� / ðmu þmdÞ at leading
order] for chiral extrapolation, as in Refs. [4,5] for mass
splittings. While this is true for low-lying states, a similar
simple extrapolation may not be reasonable for higher,
excited states. The purpose of this Letter is to show that
dramatic and even nonanalytic dependences in the light
quark masses can arise. Hence, for the excited states that
are close to open flavor thresholds, a formula that takes into
account the nonanalyticity should be utilized for chiral
extrapolation. Furthermore, for radiative transitions with
strong coupled-channel effects, simulations at several
pion masses are necessary to extract the physical results.
The effects of light quarks in heavy quarkonium systems

are due to quantum fluctuations of the sea quarks. Sea
quark and antiquark pairs are created and annihilated in
the color singlet heavy quarkonium. Low-energy fluctua-
tions can be described in the framework of chiral pertur-
bation theory, which is the standard tool for chiral
extrapolations. The quarkonium states can be included as
matter fields. Let us focus on the quark mass dependence of
the quarkonium mass. Two types of sea quark fluctuations
are schematically depicted in Fig. 1; type (a) is discon-
nected and suppressed according to the Okuba-Zweig-
Iizuka rule; type (b) means that the heavy quark (antiquark)

FIG. 1. Schematic diagrams of the creation and annihilation of
sea quarks in a heavy quarkonium, with solid and dashed lines
representing heavy quarks and light sea quarks, respectively.
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and virtual sea antiquark (quark) can form a color singlet
state, a heavy meson (antimeson); i.e., a virtual-heavy-
meson–antimeson pair is created and annihilated after a
short propagation. There are certainly other contributions,
such as the doubly Okuba-Zweig-Iizuka suppressed pro-
cesses that induce mixing of the heavy quarkonium and a
light meson. We expect that such contributions are less
important, and therefore do not consider them. Type (a) can
be parameterized using an effective chiral Lagrangian
containing unknown low-energy constants. The resulting
quark mass dependence is analytic in the light quark
masses up to chiral logarithms, see Ref. [14]. For instance,
denoting the operator annihilating a quarkonium field by
c , a possible contribution would be proportional to
c yc h�þi in the effective chiral Lagrangian. Here, �þ ¼
uy�uy þ u�u, hi is the flavor trace, and � ¼ 2B diag
ðmu;md;msÞ contains the light quark mass matrix, where
B ¼ jh0j �qqj0ij=F2 and F is the pion decay constant in the
chiral limit. The Goldstone boson field �, which contains
the pions, eta and kaons in the SU(3) case, are included in

u ¼ ffiffiffiffi
U

p
andU ¼ expði ffiffiffi

2
p

�=FÞ. At leading orderOðM2
�Þ,

this term gives a contribution proportional to Bðmu þ
md þmsÞ to the quarkonium mass, and at OðM4

�Þ, the
chiral logarithm M4

� logM2
� will arise.

Complexity comes from type (b), which can lead to
nonanalyticity, as will be shown below. Because the heavy
quarkonium states are normally not far from the open
flavor thresholds, the open flavor mesons, at least the
ground states, do not necessarily decouple in low-energy
effective field theory (EFT) for heavy quarkonium. In
particular, the masses of many excited quarkonium states
are very close to the thresholds. In that case, one should
consider coupled-channel effects due to coupling to the
open flavor mesons and antimesons in chiral extrapolation.
As an example, let us study P-wave charmonium states.
They couple to the pseudoscalar and vector charmed me-
sons in an S-wave with a coupling constant g. The self-
energy due to coupling to the charmed mesons with masses
m1 and m2 is expressed in terms of the scalar two-point
loop function

�ðP2Þ �
Z d4l

ð2�Þ4
i

ðl2 �m2
1 þ i�Þ½ðP� lÞ2 �m2

2 þ i�� :
(1)

In the rest frame of the charmonium and taking the non-
relativistic approximation for both propagators, we regu-
larize the divergent loop with a three-momentum cutoff �

�ðM2; �Þ ¼ 1

4�ðm1 þm2Þ
�
� �

�
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� i�

p �
; (2)

whereM denotes the charmonium mass, c ¼ 2�12b12 with
�ij ¼ mimj=ðmi þmjÞ the reduced mass, and b12 ¼
m1 þm2 �M. The mass gets renormalized by the real
part of the self-energy. Writing out the M�-dependence
explicitly, we get

MðM�Þ ¼ M0ð�;M�Þ þ g2m1m2 Re�ðM2; �;M�Þ; (3)

where the factor m1m2 is required for correct normaliza-
tion, and

M0ð�;M�Þ ¼ M
�
0ð�Þ þ dð�ÞM2

� þOðM4
�Þ (4)

is the bare mass. (Note that the mass shift due to virtual
loops is a scale-dependent quantity, as can be seen in
Eq. (3), and not a physical observable. For phenomeno-
logical studies of the charmed meson loops in the charmo-
nium spectrum, we refer to Refs. [15,16].) Both the

chiral-limit bare mass M
�
0ð�Þ and the coefficient dð�Þ

depend on the cutoff, since the masses of open flavor heavy
mesons m1 and m2 depend on the pion mass. For simplic-
ity, we assume that the heavy mesons lie in the same spin

multiplet. Up to OðM2
�Þ, we have mi ¼ m

�
i þ h1M

2
�=m

�
i

[17], where h1 is a dimensionless coefficient of order unity.
Notice that

ffiffiffi
c

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

�
12

�
�þ h1

�
�
12

M2
�

�
þOðM4

�Þ
s

; (5)

where �
�
12 ¼ m

�
1m

�
2=ðm� 1 þm

�
2Þ, and � ¼ m

�
1 þm

�
2 �M.

Therefore, for the case with j�j & R � M2
�=�

�
12, the uni-

tary cut in the loop function Eq. (2) cannot be expanded in
a polynomial inM�. Although R ’ 20 MeV is small at the
physical pion mass, it is around 270 MeV for a pion mass
of 500 MeV. As a result, there will be a cusp due to the
nonanalyticity at the point MðM�Þ ¼ m1ðM�Þ þm2ðM�Þ.
Nonanalyticity due to similar effects in the chiral extrapo-
lation was discussed earlier for the � resonance [18,19]
and the pion form factor [20].
We use h1 ¼ 0:44 as determined from the SU(3) mass

splittings of both the pseudoscalar and vector charmed
mesons [21,22]. The M�-dependence of M�M0ð�Þ for
the first radially excited P-wave charmonia is plotted in
Fig. 2 (upper), where � ¼ 0:63 GeV, corresponding to
M�M0ð�Þ ¼ 0 for the h0c at the physical pion mass, is
used; g01 is the coupling of the 2P charmonia to the
charmed mesons, as defined in [23], and its dimension is

mass�1=2. Using model values for the masses of �0
c0, �

0
c1,

and h0c at the physical pion mass from Ref. [24], these
states are above the coupled thresholds at the physical pion
mass. Increasing the pion mass, the charmed meson masses
increase, too. One expects the charmonium mass to in-
crease more slowly than the charmed meson thresholds.
Therefore, for a charmonium with a mass slightly higher
than the open charm threshold at the physical pion mass,
the charmoniummass should coincide with the threshold at
some larger pion mass. After that, the open charm mesons
cannot go on shell, and a cusp shows up because of the end
of the unitary cut, as seen in Fig. 2 (upper); �0

c2 is always
below the D� �D� threshold, so that there is no cusp in the
curve for this state.
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For an S-wave charmonium, the nonanalyticity due to
coupling to the pseudoscalar and vector charmed mesons is
less important, and even invisible. This is because the
coupling is in aP-wave. Of course, it can couple to a ground
state charmed meson and an orbitally excited state in an
S-wave, as considered in Ref. [8]. However, the thresholds
are far from the masses of the 1S and 2S charmonia. In this
case, the square root in Eq. (5) can be expanded in a
polynomial in M2

�. Hence, the M�-dependence of the
quarkonium mass is given by Eq. (4) with redefined

M
�
0ð�Þ and dð�Þ.
It is instructive to briefly discuss possible hadronic

molecules with a binding energy much smaller than the
pion mass. In this case, the bound state can be described by
an EFT with only contact terms analogous to that for the
deuteron; for example, see [25]. Then, the pion mass
dependence of the mass of the hadronic molecule is domi-
nated by that of the masses of the constituents, as argued in
Ref. [26]. So, in the pion mass range where X (3872) is a
D �D� bound state [27], the M�-dependence of its mass
should be approximately given by that of the threshold,
as depicted in Fig. 2 (lower) at OðM2

�Þ. We will not
calculate the deviation from the threshold due to a small
but finite binding energy here, but only point out that a
loosely bound state can easily become unbound by varying

the interaction strength. It is worth notice that the coupling
constant g in Eq. (3), which controls the strength of the
cusp in the M�-dependence of the charmonium mass, is
also a measure of the hadronic molecular content of a given
state [28,29]. However, it is obvious that a quantitative
treatment of the quark mass dependence of a hadronic
molecule requires a more refined approach than that given
here. For example, see Refs. [30,31].
The chiral corrections to the heavy quarkoniummass are

always small compared to the mass in the chiral limit.
More noticeable is that there exist quantities in heavy
quarkonium physics whose pion mass dependence is
strong. For these quantities, chiral extrapolation is manda-
tory. One can imagine that in the mass splittings between
two heavy quarkonium states, the great bulk of the chiral-
limit masses cancels, and the chiral corrections are poten-
tially large. However, as seen in Eq. (4), it is not possible to
give a parameter-free prediction for its pion mass depen-
dence even at OðM2

�Þ, since dð�Þ is scale dependent. A
prediction can only be made after fitting the parameters to
sufficiently large data. But there are indeed quantities
whose quark mass dependence is strong and can be pre-
dicted parameter free. A good example is given by the
decay widths of the hindered M1 transitions between the
2P and 1P charmonium states. These transitions are shown
to be dominated by coupled-channel effects [32] based on a
nonrelativistic effective field theory (NREFT) [23,33,34].
As shown in Ref. [32], these transitions are dominated

by triangle diagrams at the hadronic level, with three
intermediate charmed or anticharmed mesons (see
Fig. 3). The decay amplitude is proportional to the three-
point scalar loop function. It is convergent, and the non-
relativistic expression reads as [23,35]

IðqÞ � i
Z d4l

ð2�Þ4
1

ðl2 �m2
1 þ i�Þ½ðP� lÞ2 �m2

2 þ i��
� 1

½ðl� qÞ2 �m2
3 þ i��

¼ N
1ffiffiffi
a

p
�
arctan

�
c0 � c

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðc� i�Þp

�

þ arctan

�
2aþ c� c0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðc0 � a� i�Þp

��
; (6)

FIG. 2 (color online). Upper panel: Pion mass dependence
of M�M0ð�Þ for the 2P charmonia calculated with
� ¼ 0:63 GeV. Lower panel: Pion mass dependence of the
D �D� threshold.

FIG. 3 (color online). Hadronic loop diagram, with the double,
solid, and wiggly lines denoting the charmonia, charmed me-
sons, and photon, respectively. The dashed curves represent the
unitary cuts.
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where P and q are the momenta of the initial particle
and the photon, respectively, b23 ¼ m2 þm3 þ q0 �M
with M the mass of the initial particle, N ¼ �12�23=
ð16�m1m2m3Þ,

a ¼
�
�23

m3

�
2
~q2; c0 ¼ 2�23b23 þ�23

m3

~q2;

and c is as defined below Eq. (2). For small a, one may
expand the loop function out

IðqÞ ¼N
2ffiffiffiffi

c0
p þ ffiffiffi

c
p

�
1þO

�
a

minðc0; ðc0 � cÞ=2Þ
��

: (7)

It is then clear that two unitary cuts (see Fig. 3) lead to the
main contribution of the three-point loop. Corresponding
to the two cuts, one may define two velocities of the
intermediate mesons. The velocity v used in the NREFT
power counting [23] should be understood as the average
of these two velocities. Following the discussion around
Eq. (5), we can expect cusps in the M�-dependence of the
decay widths when the mass of the decaying particle co-
incides with the coupled threshold. The results for
�ð�0

c2 ! hc�Þ and �ðh0c ! �cJ�Þ are shown in Fig. 4,
where we have neglected the M�-dependence of the char-
monium masses and used the same model value 3908 MeV
for Mh0c [24] as before.

The cusp in �ðh0c ! �cJ�Þ appears at about M� ¼
300 MeV, the same value as in Fig. 2 for h0c. From
Fig. 4, one finds a strong dependence on the pion mass.
The value of �ðh0c ! �c0�Þ at a pion mass of 485 MeV, the
same value as that used in the lattice simulations for theM1
transitions between S-wave charmonia [12], is only about
half of that at the physical pion mass. This observation
highlights the necessity of chiral extrapolation of lattice
simulations for radiative transitions of heavy quarkonia
and the necessity of small pion masses in the simulations.
Otherwise, the uncertainty due to unphysical pion mass
could be very large. Although parameter-free predictions
for M1 transitions between the S-wave heavy quarkonia

are not possible, as noted in Ref. [32], the charmed meson
loops are still expected to be crucial [36,37]. Thus, the pion
mass dependence induced by the virtual charmed mesons
could introduce a large uncertainty due to the large pion
mass used in lattice simulations.
One can further study the strange quark mass depen-

dence, which translates into the dependence on M̂2
K ¼

Bms, where we use the same notation as Ref. [38]. As an
example, we plot the simultaneous dependence onM� and

M̂K of �ð�0
c2 ! �hcÞ and �ðh0c ! ��c0Þ in Fig. 5, where

we used M
Dð�Þ

s
¼ M

�

Dð�Þ þ 2h1M̂
2
K=M

�

Dð�Þ þOðM̂4
KÞ. One

clearly sees the nonanalyticity in both the M� and M̂K

dependence of the latter.
In conclusion, we have discussed chiral extrapolations in

heavy quarkonium physics, especially for the higher ex-
cited states. These states are close to open flavor thresh-
olds. As a result, chiral extrapolation may be nonanalytic.
This observation is true for any excited hadron whose mass
is in the neighborhood of an S-wave-coupled hadronic
threshold. For such a state, we propose to perform the
chiral extrapolation of the mass using

MðM�Þ ¼ M
� þ dM2

� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eþ fM2

�

q
; (8)

where M
�
, d, e, and f are parameters to be fit to the lattice

data. For states far away from any open flavor threshold, e
will be much larger than fM2

� so that the square root can be
expanded, and one may use only the first two terms in the
above equation up to OðM2

�Þ. Furthermore, we find that
light quark mass dependence is not always suppressed for
heavy quarkonium systems. As an example, we show that
lattice results for the decay widths of the hindered M1
transitions between P-wave charmonia at a pion mass
around 500 MeV can deviate by a factor of 2 from the
actual values at the physical pion mass. Simulations of
these transitions would also provide a nice test of the
NREFT, and would be very useful in identifying the
coupled-channel effects, which might be the key to under-
standing some long-standing puzzles in heavy quarkonium
systems. If the resulting pion mass dependences follow our
predictions, they would also allow for extraction of the
product of coupling constants g1g

0
1, which cannot be mea-

sured directly.

FIG. 4 (color online). Dependence of the widths of various
hindered M1 transitions on the pion mass. The vertical line
denotes the physical pion mass.

FIG. 5 (color online). M� and M̂K dependence of
�ð�0

c2 ! �hcÞ (left) and �ðh0c ! ��c0Þ (right).
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