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Analytical solutions to the time-dependent Schrödinger equation describing a driven two-level system

are invaluable to many areas of physics, but they are also extremely rare. Here, we present a simple

algorithm that generates an unlimited number of exact analytical solutions. We show that a general single-

axis driving term and its corresponding evolution operator are determined by a single real function which

is constrained only by a certain inequality and initial conditions. Any function satisfying these constraints

yields an exact analytical solution. We demonstrate this method by presenting several new exact solutions

to the time-dependent Schrödinger equation. Our general method and many of the new solutions we

present are particularly relevant to qubit control in quantum computing applications.
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The search for analytically solvable driven two-level
quantum systems began shortly after the birth of quantum
mechanics and continues into the present. Such systems are
ubiquitous throughout quantum physics, and it is notori-
ously difficult to acquire exact analytical solutions to the
relevant time-dependent Schrödinger equation aside from
a few special cases. Perhaps the most famous examples of
exactly soluble two-level evolution are the Landau-Zener
[1,2] and Rabi [3] problems. The latter, of course, has
several generalizations including the paradigmatic Jaynes-
Cummings model [4]. Another well known exact solution
discovered in the early 1930s by Rosen and Zener is the
hyperbolic secant pulse [5]. This solution has proven
important in the contexts of self-induced transparency [6]
and qubit control [7–9] and has since been extended to
a family of analytical controls by a number of authors
[10–19]. Some additional classes of soluble pulses were
also discovered recently [20,21], as well as a few oscillatory
control examples [21,22].

Despite these isolated successes, analytically solvable
two-state problems have remained extremely rare. This
fact has become more poignant in recent decades with
the advent of quantum computation, where analytically
solvable control pulses are especially attractive in light of
the many advantages they offer in relation to the design of
qubit control operations. In particular, such solutions can
facilitate the development of controls that are both precise
and robust without the need for long control sequences
[7,8,23–26]. However, the relatively small number of
known analytically solvable control fields greatly limits
the options one has when adopting an analytical approach
to qubit gate design, and it is unlikely that any of the known
examples will be ideal for a specific situation, especially
given that almost all of these predate the inception of
quantum computing.

In this Letter, we present a completely new theoretical
approach to the driven two-state problem. We derive an

algorithm that produces an unbounded number of analyti-
cally solvable two-level systems driven by a single-axis
control field. We develop this method by showing that a
general single-axis control field and its associated evolu-
tion operator are both determined by a single real function
qðtÞ, and we give the explicit functional dependencies on
qðtÞ. We further derive an inequality and initial conditions
which qðtÞ must obey in order for the resulting evolution
operator to be a proper solution of the Schrödinger
equation. Any qðtÞ which satisfies these constraints corre-
sponds to an analytically solvable two-state problem. We
demonstrate our method by deriving several new analytical
solutions. We also determine how properties of qðtÞ trans-
late to the control field and evolution operator. This
‘‘reverse-engineering’’ approach is especially appropriate
in the context of quantum control where one typically
wishes to achieve a particular evolution by applying a
control field whose basic features are restricted only by
a few experimentally imposed constraints.
The Hamiltonian we will consider has the general form

H ¼ JðtÞ
2

�z þ h

2
�x; (1)

where JðtÞ is the control (driving) field, h is a constant, and
�z and �x are Pauli matrices. This Hamiltonian describes
any two-level system which is driven along a single axis
(denoted by z) [27]. In many contexts, h can be interpreted
as the energy splitting between the two levels [8,9,28], but
in other contexts, e.g., singlet-triplet qubits [29–32], JðtÞ
could be thought of as a time-varying energy splitting
between the states. We parametrize the evolution operator
corresponding to H as

U ¼
� u11 �u�21
u21 u�11

�
; ju11j2 þ ju21j2 ¼ 1; (2)

and we transform to a rotating frame in the x basis:
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D� ¼ 1ffiffiffi
2

p e�iht=2ðu11 � u21Þ: (3)

The functionsD� then solve the following set of equations
which follow from the Schrödinger equation for the evo-
lution operator U:

_D� ¼ �i
J

2
e�ihtD�: (4)

These equations can be combined to yield a second-order
differential equation for Dþ:

€Dþ þ ð�ih� _J=JÞ _Dþ þ ðJ2=4ÞDþ ¼ 0: (5)

At this point, one typically inserts a particular expression
for JðtÞ and then attempts to solve this equation for DþðtÞ
to obtain the corresponding evolution operator. Indeed, this
is the manner in which most of the previously known
analytical solutions were found. In some cases, the precise
form of JðtÞ was dictated by the physics of the problem; in
other cases, JðtÞ was chosen so that Eq. (5) became a well
known differential equation [33].

We adopt a dramatically different approach which
begins by noticing that we can also view Eq. (5) as a
differential equation for JðtÞ. It turns out that this equation
can be solved exactly for arbitrary Dþ:

JðtÞ ¼ � _Dþe�ihtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� 1

4D
2þe�2iht � ih

2

R
t
0 dt

0e�2iht0D2þðt0Þ
q ; (6)

where c is an integration constant. Given this expression
for JðtÞ, Eq. (4) then gives D� in terms of Dþ:

D� ¼ �2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� 1

4
D2þe�2iht � ih

2

Z t

0
dt0e�2iht0D2þðt0Þ

s
:

(7)

Supposing the evolution begins at t ¼ 0, we impose

Dþð0Þ ¼ D�ð0Þ ¼ 1=
ffiffiffi
2

p
, which in turn implies that

c ¼ 0 and that we should choose the minus sign in (7).
Note that imposing the initial condition at t ¼ 0 will not
prevent us from obtaining solutions that span any range of
the time domain as we will clarify later on.

Our results so far can be interpreted as a reverse engi-
neering of the control JðtÞ: We can choose the evolution by
picking the functionDþ as we like and then use (6) and (7)
to determineD�ðtÞ and JðtÞ. However, we must ensure that
unitarity is preserved: jDþj2 þ jD�j2 ¼ 1. This is auto-
matically satisfied by the general ansatz

Dþ ¼ eiðF�KþhtÞ cos�; D� ¼ e�iK sin�; (8)

where F, K, and � are arbitrary real functions. These
expressions lead to the following forms for u11 and u21:

u11 ¼ 1ffiffiffi
2

p eiðht=2�KÞðeiF cos�þ sin�Þ;

u21 ¼ 1ffiffiffi
2

p eiðht=2�KÞðeiF cos�� sin�Þ:
(9)

The initial conditions on Dþ and D� translate to �ð0Þ ¼
�=4 and Fð0Þ ¼ Kð0Þ ¼ 0. Equation (7) imposes relations
between F, K, and � which can be extracted by first
squaring both sides of this equation, differentiating the
result with respect to time, and then equating the real and
imaginary parts of both sides to arrive at

_Fþ h ¼ _Kð1� tan2�Þ; _� ¼ _K tanF tan�: (10)

In terms of these functions, JðtÞ can be expressed as

JðtÞ ¼ 2 _K secF tan�: (11)

These relations further fix some additional initial condi-

tions: _�ð0Þ ¼ 0, _Fð0Þ ¼ �h, and Jð0Þ ¼ 2 _Kð0Þ. _Kð0Þ is
not restricted by these relations. The next step is to notice
that we can solve (10) explicitly for� and K in terms of F.
For � we obtain

sinð2�Þ ¼ secFeh
R

t

0
dt0 tanFðt0Þ; (12)

where we have already chosen the integration constant so
that the initial conditions are satisfied. One may then use
either of the two equations in (10) to solve for K. It then
follows that once the function FðtÞ is specified, so are the
control field and its evolution operator.
As a first check we may consider the case h ¼ 0. In this

case, the only solution to Eq. (12) is to choose � ¼ �=4
and F ¼ 0. _K is then unconstrained by (10), and from
Eq. (9), it is clear that we obtain a z rotation for any
K ¼ 1

2

R
t
0 dt

0Jðt0Þ. We may also consider the case J ¼ 0,

which is realized by setting _K ¼ 0, implying that K ¼ 0.

It follows immediately from (10) that _� ¼ 0 and _F ¼ �h,
so that� ¼ �=4 and F ¼ �ht. This solution is, of course,
consistent with Eq. (12), and plugging into (9) reveals a
free precession about the x axis as expected.
We stress that Eq. (12) is not simply an equation which

gives � once F is chosen. This equation actually places
strong constraints on F as can be seen by noticing that the
right-hand side does not generically respect the upper and
lower bounds on sinð2�Þ; generic choices of F will yield
a right-hand side which exceeds unity. This restriction on
F reflects the fact that our Hamiltonian [Eq. (1)] generates
only a subset of all possible trajectories on the Bloch
sphere.
It is helpful to replace F by a new function q:

F ¼ arctan

�
_q

hq

�
; (13)

in which case one finds

sinð2�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ _q2=h2

q
; (14)
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_K ¼ 1

2

hqð €qþ h2qÞ
h2q2 þ _q2

�
1þ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2ð1� q2Þ � _q2
p �

; (15)

J ¼ €qþ h2qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ð1� q2Þ � _q2

p : (16)

The initial conditions on F, K, and � translate to

qð0Þ ¼ 1; _qð0Þ ¼ 0; €qð0Þ ¼ �h2; (17)

and the requirement that the right-hand side of Eq. (14)
does not have a magnitude exceeding unity leads to

_q 2 � h2ð1� q2Þ: (18)

Equations (13)–(18) together comprise the main result of
this Letter. Any function qðtÞ which satisfies Eqs. (17) and
(18) will produce an analytical solution to the Schrödinger
equation, with the control field and its corresponding evo-
lution operator given by Eqs. (13)–(16). This simple pre-
scription will enable us to generate an unlimited number of
analytically solvable two-state problems along with their
explicit solutions. We will now demonstrate this by writing
down several new examples.

There is a special choice of q for which the inequality in
Eq. (18) is saturated, namely, q ¼ cosðhtÞ; this choice
corresponds to a pure x rotation with J ¼ 0. As a first,
more nontrivial example, we consider the choice

qðtÞ ¼ expf�ð2=aÞsinh2ð ffiffiffi
a

p
ht=2Þg; (19)

where a is any real number satisfying a � 2. It can be
verified that (19) satisfies Eqs. (17) and (18). Equation (16)
then gives

JðtÞ ¼ h½ð1=aÞsinh2ð ffiffiffi
a

p
htÞ � 2sinh2ð ffiffiffi

a
p

ht=2Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð4=aÞsinh2ð

ffiffi
a

p
ht=2Þ � ð1=aÞsinh2ð ffiffiffi

a
p

htÞ � 1
q ; (20)

and this result is plotted for different values of a in Fig. 1.
The corresponding evolution operator can be computed

straightforwardly from Eqs. (13)–(15). An interesting fea-
ture of this solution is that it describes a single pulse when
a � 0 and an oscillatory control field when a < 0. This
solution illustrates that the complexity of JðtÞ and UðtÞ
tends to be comparable to that of qðtÞ, in contrast to most of
the analytical solutions known prior to this work, where
simple pulse shapes often yield evolutions governed by
special functions.
A second new nontrivial example arises from the choice

qðtÞ ¼ 1

1þ b
½e�h2t2=2 þ b cosðhtÞ�; (21)

which upon inserting into Eq. (16) yields

JðtÞ ¼ h3t2e�h2t2=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1þ h2t2Þe�h2t2 þ 2b�ðtÞ

q ; (22)

with �ðtÞ � 1� e�h2t2=2½cosðhtÞ þ ht sinðhtÞ�. Plots of
this pulse and its corresponding evolution operator for
different values of b are shown in Fig. 2, where it is
apparent that these are smooth, Gaussian-like pulses with
b controlling the magnitude and width. These pulses offer
an attractive alternative to the widely used hyperbolic
secant pulses [5]: They converge to zero muchmore rapidly
and are thus more localized, and the corresponding evolu-
tion operator is expressed in terms of elementary functions
rather than the hypergeometric function. Gaussian pulses
have proven useful in the context of error suppression in
superconducting qubit gate design [24–26]; however, these
were not analytically solvable and required numerical
optimization techniques.
The two examples we have given so far already illustrate

that properties of qðtÞ are reflected in JðtÞ. In the context of
quantum control, experimental constraints often require
JðtÞ to be smooth, bounded, and well localized in time.
Smoothness of JðtÞ is guaranteed by choosing a smooth
qðtÞ. In addition, it is clear from Eq. (16) that a given qðtÞ
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will produce a well defined pulse [i.e., JðtÞ ! 0 as t !
�1] if q ! 0 and €q ! 0 as t ! �1, or if
€q ! �h2q in this limit [the former condition is satisfied
by Eq. (19) and the latter by Eq. (21)]. The strict inequality
0< _q2 < h2ð1� q2Þ for t > 0 further ensures that JðtÞwill
be a bounded function. In some cases (e.g., singlet-triplet
qubits [32]), one also needs to impose positive control,
JðtÞ � 0; as seen from Eq. (16), this requires €q � �h2q.
Equation (19) with a � 0 and Eq. (21) satisfy the above
criteria, in which case we have a single, positive, bounded
pulse as confirmed by the top panels of Fig. 1 and the top
left panel of Fig. 2. When a < 0 in Eq. (19), _qðt0Þ ¼ 0 for
some t0 > 0, leading to the periodic behavior shown in the
lower panels of Fig. 1.

The examples of Eqs. (19) and (21) also exhibit the
connection between qðtÞ and the corresponding evolution
operator. For instance, these examples contain even control
functions, Jð�tÞ ¼ JðtÞ, which follows directly from the
evenness of the chosen qðtÞ. For such pulses, the evolution
operator given by Eqs. (2) and (9) describes half the evo-
lution due to the pulse, since we have imposedUð0Þ ¼ 1. If
we wish to instead impose Uð�tfÞ ¼ 1 for some tf > 0,

then the full evolution operator describing the evolution
from t ¼ �tf onward is UtotðtÞ ¼ UðtÞUyð�tfÞ. At t ¼ tf,

one then finds that TrfUtotðtfÞ�yg ¼ 0 and TrfUtotðtfÞ�zg	
sin½2�ðtfÞ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ðtfÞ þ _q2ðtfÞ=h2

q
, implying that the

pulse effects a rotation about an axis in the x� z plane
which depends on the behavior of q at t ¼ tf. For well

defined pulses, in particular, if tf is sufficiently large and

q ! A cosðhtÞ þ B sinðhtÞ as t ! 1, then the rotation axis
is determined by A and B, where A ¼ B ¼ 0 yields an x
rotation. It is then clear from Eq. (19) that the pulse family
of Eq. (20) implements x rotations for any a � 0, while
Eq. (21) reveals that the pulses given in Eq. (22) implement
rotations about various axes in the x� z plane depending
on b. In particular, denoting the rotation axis by ðnx; 0; nzÞ
and the angle by �, the lower left panel of Fig. 2 reveals that
Im½Utot;11ðtfÞ� ¼ �nz sinð�=2Þ quickly saturates to a con-

stant b-dependent value beyond htf * 3. Given nz and �,

one can first choose b to fix the combination nz sinð�=2Þ
and then tune tf > 3=h to achieve the target rotation.

We can systematically find q’s which satisfy Eq. (18)
by first choosing a function P ðqÞ such that 0 � P ðqÞ �
1� q2 and then solving _q2 ¼ h2P ðqÞ. Since this equation
is homogeneous in q, it can be integrated directly:

ht ¼
Z 1

q

dq0ffiffiffiffiffiffiffiffiffiffiffiffi
P ðq0Þp � W ðqÞ: (23)

The fact that P ðqÞ is strictly nonnegative guarantees that

W ðqÞ �
Z 1

q

dq0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q02

p ¼ arccosq: (24)

The initial conditions on qðtÞ become the condition
W ðqÞ ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2q
p

as q ! 1. Any invertible function

W ðqÞ satisfying this boundary condition and the inequality
(24) automatically produces an analytical solution to the
Schrödinger equation with qðtÞ ¼ W�1ðhtÞ.
To give an example using this approach, we choose

W ðqÞ ¼ ð1=aÞarctanhða ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2q

p Þ; (25)

where a is a real constant. Upon inverting, we obtain

qðtÞ ¼ 1� 1

2a2
tanh2ðahtÞ; (26)

JðtÞ ¼ h½14a2 � 1þ ð2a2 � 1Þ coshð2ahtÞ�sech2ðahtÞ
2 cothðahtÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a2½1� sech4ðahtÞ� � tanh2ðahtÞp :

(27)

The corresponding control pulses are shown in Fig. 3. The

pulse with a ¼ 1=
ffiffiffi
2

p
asymptotes to zero at large times,

while pulses with a > 1=
ffiffiffi
2

p
asymptote to the positive

constant ð2a2 � 1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � 1

p
. These latter pulses could

be relevant in experimental situations in which it is not
possible to turn off JðtÞ completely, as in the case of

singlet-triplet qubits [29–31]. Pulses with a < 1=
ffiffiffi
2

p
are

defined on a strictly finite time interval as shown in the
right panel of Fig. 3.
As a final example, we make the choice

W ðqÞ ¼ cos�1f1� ðaþ 1=aÞ½tan�1ðaqÞ � tan�1a�g;
yielding

qðtÞ¼ ð1=aÞ tanftan�1a�½2a=ð1þa2Þ�sin2ðht=2Þg: (28)

The resulting JðtÞ is a straightforward combination of
elementary functions that is plotted in Fig. 4, where it is

4 0 4
0

2

4

6

ht

J
t

h

4 0 4
0

0.5

1

1.5

ht

J
t

h
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apparent that this control resembles two superimposed
sinusoids. Varying the parameter a changes the amplitude
and average value of these sinusoids but not their fre-
quency. This type of solution is relevant, e.g., for determin-
ing the properties of two-level fluctuators which cause
decoherence in superconducting qubits [21,28].

In conclusion, we have shown how to systematically
obtain an unlimited number of analytically solvable con-
trols and have provided explicit analytical formulas for
their corresponding evolution operators. This vastly in-
creases the number of known analytical solutions to the
two-state Schrödinger equation, providing a powerful tool
in robust quantum gate design and in the myriad of other
physical contexts in which the two-state problem arises.

This work is supported by LPS-NSA and IARPA.
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