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We report on the control of the faceting of crystal surfaces by means of surface electromigration. When

electromigration reinforces the faceting instability, we find perpetual coarsening with a wavelength

increasing as t1=2. For strongly stabilizing electromigration, the surface is stable. For weakly stabilizing

electromigration, a cellular pattern is obtained, with a nonlinearly selected wavelength. The selection

mechanism is not caused by an instability of steady states, as suggested by previous works in the literature.

Instead, the dynamics is found to exhibit coarsening before reaching a continuous family of stable

nonequilibrium steady states.
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In nonequilibrium conditions, crystal surfaces undergo
various instabilities leading to micro- or nanostructures.
The ultimate faith of these topographical structures is
governed by the nonlinear dynamics of the surface.
Understanding the nonlinear processes at play is therefore
important for many applications where one wishes to de-
sign structures with a given wavelength. However, the
complexity of nonlinear wavelength selection mechanisms
have hindered their control, and strategies to achieve pre-
dictive design are still poorly understood. A possible strat-
egy is to control existing instabilities by means of an
external field. Here we explore the control of the faceting
instability with electromigration. The faceting instability is
the decomposition of a surface with a given average ori-
entation into neighboring facetted orientations [1–6]. This
instability is of thermodynamic origin, and is driven by the
reduction of the surface free energy. The presence of an
electric current leads to a surface electromigration mass
flux JE. This mass flux can stabilize or destabilize crystal-
line surfaces depending on its orientation-dependence
[7–13]. Many studies have been devoted to these two
instabilities. The combination of electromigration and an-
isotropy is already known to lead to nontrivial dynamics of
voids, with the appearance of nontrivial orientations and
oscillatory dynamics [14]. In this Letter, we show that a
faceting instability can be controlled by electromigration.
In the presence of destabilizing electromigration, the fac-
eting instability is found to be reinforced, and perpetual

coarsening with a wavelength increasing as t1=2 is found.
Strongly stabilizing electromigration supersedes the facet-
ing instability and stabilizes the surface. This result is
similar to the stabilization of the elastic stress-induced
Grinfeld instability by electromigration discussed in
Ref. [15]. Our most striking result appears in the presence
of weakly stabilizing electromigration: when starting from
random initial conditions, a wavelength larger than that
emerging from the linear instability is selected. Usual
nonlinear wavelength selection scenarios emerge from an

instability of periodic steady states. Examples of these
scenarios include interrupted coarsening [16–18] and sec-
ondary instabilities such as the Eckhaus instability [19].
Our scenario is different: we find a stable steady state
branch, and coarsening occurs before the system reaches
any steady state.
Model.—Combining previous works on faceting [4,5]

and on electromigration-induced instabilities [11–13], we
write down a phenomenological nonlinear equation which
governs surface dynamics. We use a one-dimensional
model for the crystal surface height profile hðx; tÞ and slope
�ðx; tÞ ¼ @xhðx; tÞ. The average orientation � ¼ 0 of the
surface is assumed to be unstable, and to decompose into
facets of slopes � ¼ �1. For the sake of simplicity, we
consider a Ginzburg-Landau-like orientation dependent
energy:

F ½�� ¼ �
Z

dx

�
��2

2
þ�4

4
þ �2

2
ð@x�Þ2

�
; (1)

where � is a typical surface energy scale. The last term on
the r.h.s. accounts for a curvature energy cost, which
regularizes facets [4,5] at the cutoff length �. This length
scale could, e.g., account for the distance between atomic
steps running on the facet. From Eq. (1), the local chemical
potential is derived as

� ¼ �
�F ½��
�h

¼ ��@x½�2@xx�þ���3�: (2)

where � is the atomic area. We consider surface-diffusion
limited dynamics, so that chemical potential gradients
induce a surface mass flux J� ¼ �DL@x�=kBT, where

kBT is the thermal energy. In addition, we assume that an
external electric current is applied to the crystal, leading to
an orientation-dependent electromigration surface mass
flux JEð�Þ. Expanding the electromigration current for
small slopes, we write JEð�Þ � JEð0Þ þ�J0Eð0Þ. The
slope-dependence of JE may either be caused by the
anisotropy of surface diffusion [11,20] or migration
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force [21]. As shown in Fig. 1(a), electromigration is
destabilizing when J0Eð0Þ> 0, and stabilizing when
J0Eð0Þ< 0. This instability is the subject of a large litera-
ture, and has been the basis of the interpretation of the
instabilities observed on semiconductors [7] and on metals
[22]. Mass conservation reads @th ¼ ��@x½J� þ JE�, and
leads to an evolution equation for the surface height:

@th

�
¼ DL

��

kBT
@xx½�2@xxxxhþ @xxh� @xð@xhÞ3�

� J0Eð0Þ@xxh; (3)

where we have assumed for simplicity that DL does not
depend on the orientation. Clearly, additional nonlinear
terms could enter into play, such as higher order terms in
the expansion of JE, or an orientation dependence of DL in
J�. However, since it is the simplest model which accounts

for the combined action of faceting and electromigration,
we shall focus on Eq. (3) in the following. Normalizing x
with �, t with kBT�

4=�2�DL, and defining the dimension-
less parameter j0E ¼ J0Eð0ÞkBT�2=��DL, we may write a
one-parameter equation for the slope:

@t� ¼ @xxxx½@xx�þ���3� � j0E@xx�: (4)

The relaxation part of Eq. (4), first derived in Ref. [5], is
expected to give rise to perpetual logarithmic coarsening
[23]. The electromigration part has been derived and
used in many papers, see Ref. [13] for a review.
Electromigration without faceting is expected to lead to
power-law coarsening [13]. Here, we claim that the
combination of the two physical processes—faceting and
electromigration—gives rise to novel dynamics.

Linear stability analysis.—Let us start the study of
Eq. (4) by means of a linear stability analysis. The growth
rate i! of a Fourier mode �ei!tþiqx of wavelength
� ¼ 2�=q reads:

i! ¼ �q6 þ q4 þ j0Eq2: (5)

As shown on Fig. 1, we obtain three regimes. (i) For

j0E � 0, all wavelengths larger than �� ¼ 2�=½1=2þ
ð1=4þ j0EÞ1=2�1=2 are unstable. (ii) When electromigration
is weakly stabilizing 0> j0E >�1=4, there is a finite

range of unstable wavelengths �� < �< �þ where �þ ¼
2�=½1=2� ð1=4þ j0EÞ1=2�1=2. (iii) Finally, for strongly
stabilizing electromigration, when j0E <�1=4, the surface
is linearly stable. When the surface is unstable, the wave-

length �m ¼ 2�31=2=½1þ ð1þ 3j0EÞ1=2�1=2 of the fastest
growing mode is expected to emerge from random initial
conditions (where all modes are present).
As an example, we consider Si(111) vicinal surfaces

where both electromigration-induced instabilities [7–10]
and faceting have been observed. Faceting on Si(111)
vicinal surfaces could be induced by surface energies, as
in Refs. [24,25], or by small coverage of metal atoms, as
observed in several experiments [26,27]. Assuming
attachment-detachment-limited step dynamics following
Ref. [28], one has J0Eð0Þ=�DL � �F=�kBT, where F is
the electromigration force. The typical distance between

atomic steps is d� 102–103 �A. Assuming �� d and using

jFj=kBT � 108 �A, and �� 0:1 eV �A�2, we find jj0Ej �
10�2 � 10, suggesting that the three stability regimes
could be observed in experiments. In addition, experimen-
tal observations could provide quantitative informations on
the phenomenological cutoff length �, that enters in many
macroscopic models with facets [4,5,23,29,30].
Lyapunov functional.—The linear stability analysis pre-

dicts the existence or not of an instability from small initial
perturbations. However, the amplitude of the unstable
modes increases exponentially fast, and the unstable front
enters into the nonlinear regime where the �3 term in
Eq. (4) is not negligible anymore. While the analytical
study of the nonlinear regime is in general delicate, the
presence of a Lyapunov function L, i.e., a quantity which
monotonically decreases during the dynamics, greatly
simplifies the analysis. Here, we define

L ½h� ¼ F ½@xh� � j0E
2

Z
dxhðxÞ2: (6)

Indeed, one may write @th ¼ @xx½�L=�h�, leading to:

@tL ¼ �
Z

dx½@xð�L=�hÞ�2 � 0: (7)

Steady state branches.—The space of all possible con-
figurations for the surface profile is very large, and it is
impossible to evaluate L for all configurations. As a
consequence, we would like to reduce this space to a
relevant subset of shapes which is simpler to explore.

FIG. 1 (color online). Mechanism of the instability and
dispersion relation—(a) Schematics of the faceting and
electromigration-induced instabilities. (b) Growth rate i! of
Fourier modes from linear stability analysis, see Eq. (5).
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A powerful approach along this line is to study the steady
states �0ðxÞ, which are the solutions of @t�0 ¼ 0. Using
Eq. (7), one has @xð�L=�hÞ ¼ 0, leading to

@xx½@xx�0 þ�0 ��3
0� � j0E�0 ¼ 0: (8)

The central idea motivating the study of steady states is the
existence of a separation of time scales, where the shape
first relaxes rapidly toward periodic steady states. Then,
these periodic solutions may exhibit an instability occur-
ring at longer time scales, leading for example to a coars-
ening process [18], or to the Eckhaus instability [19].

The steady states profiles are obtained numerically,
starting with a small amplitude sinusoidal perturbation
� sinð2�x=�Þ with one period in a box of width � [31].
Following the linear stability analysis, the perturbation
may grow or decay. When it grows, it reaches a finite
amplitude steady state where it stops. As shown in
Fig. 2(a) for j0E > 0, the steady state exhibits a monotoni-
cally increasing amplitude A as a function of the wave-
length �. Asymptotically for large A and �, we expect
the dominant term among the linear terms to be the one
with the fewest derivatives, i.e. j0E�0, and this term
has to balance the nonlinear term @xx�

3
0, leading to

A� ðj0EÞ1=2�. The numerical determination of the steady-

state branch actually indicates that A � 0:16ðj0EÞ1=2� for
� � ��.

When �1=4< j0E < 0, we obtain a bell shape branch
connecting the two marginal points (� ¼ ��, A ¼ 0), and
(� ¼ �þ, A ¼ 0), as shown in Fig. 3(a). In addition, using
suitable initial conditions, we find another steady-state
branch, which emerges from the primary bell-shape
branch. The typical steady-state profiles are shown on
Fig. 3(d). Other branches could exist, and we have
not tried to provide a complete analysis of all possible

steady-state branches. However, and as discussed in the
following, the study of the main bell-shape branch seems to
be sufficient to account for the main features of the full
dynamics starting from small random perturbations.
The numerical calculation of L along the steady-state

branches shows thatL decreases monotonically with � for
j0E > 0, while it exhibits a minimum for � ¼ �L when
�1=4< j0E < 0. At this point, it is tempting to speculate
that the dynamics will simply follow the gradient of L
along the steady-state branches leading to infinite coarsen-
ing when j0E > 0 and interrupted coarsening at � ¼ �L for
�1=4< j0E < 0. We shall see in the following that some
of these speculations are actually wrong.
Steady-state stability.—In order to analyze the dynamics

more carefully, we shall investigate the stability of steady
states with respect to small perturbations �1ðxÞ ¼ �ðxÞ �
�0ðxÞ 	 �0ðxÞ. The slope variation �1, leads to the
following variation of L:

L 1 ¼ 1

2

Z
dx½�2

1ð3�2
0 � 1Þ þ ð@x�1Þ2 � j0Eh21�; (9)

where @xh1 ¼ �1. Physically relevant steady states must
be stable with respect to perturbations with wavelengths
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FIG. 2 (color online). Perpetual power-law coarsening for
j0E > 0—(a) The black line indicates the steady-state amplitude
A versus wavelength � of periodic steady states for j0E ¼ 0:45
extracted from the profiles of periodic steady states. Crosses
(
 ): full simulations of Eq. (4) from small random initial
conditions in a large system of size L ¼ 500, as in Fig. 4(a).
(b) Rescaled Amplitude A=j0E and wavelength �=ðj0EÞ1=2 as
function of time in a large system starting from small random
initial conditions. The solid lines are the power laws discussed in
the text.

FIG. 3 (color online). Nonlinear wavelength selection for
�1=4< j0E < 0—(a) The (black) solid and (brown) dashed lines
indicate the steady-state amplitude A versus wavelength � for
j0E ¼ �0:15. Red line: full simulations of Eq. (4) from small
random initial conditions in a large system of size L ¼ 500, as in
Fig. 4(b). Orange lines: dynamics starting from slightly per-
turbed periodic steady state in an extended system. Green stars
indicate theoretical limit of stability of the steady-state branch.
(b) The shaded region corresponds to the linearly unstable
region. Green stars: limits of steady-state stability.
(c) Lyapunov functional density ‘ ¼ L=L where L is the
system size, evaluated from the steady-state profiles.
(d) Steady-state profiles numerically obtained for the two
branches at j0E ¼ �0:15.
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smaller than their periodicity, and in general, we expect
that the most dangerous modes are long-wavelength
perturbations, as pointed out, e.g., in Ref. [18]. In the
long wavelength limit, where the perturbation wavelength
is much larger than the periodicity of the steady state �0,
one may simply replace �2

0ðxÞ by its average over one

period h�2
0i. Thus, since it has constant coefficients,

Eq. (9) is now diagonal in Fourier space, and this suggests
a simple stability criterion:

ð3h�2
0i � 1Þq21 þ q41 � j0E > 0: (10)

As a consequence, long wavelength modes q1 ! 0 are
always unstable in the case of destabilizing electromigra-
tion j0E > 0. This is in agreement with the above specula-
tion of perpetual coarsening. In addition, we may also gain
information about the coarsening exponent. Indeed, at long
wavelengths we have L1 � �R

dxj0Eh21=2, and as a con-

sequence one has @th1 � �j0E@xxh1. This relation provides
a link between lengthscales x, assumed to be��, and time

scales t, leading to �� ðj0EÞ1=2t1=2. Using the previously
derived linear relation between � and A, we also find

A� j0Et1=2.
When �1=4< j0E < 0, from Eq. (10), the steady states

should be stable for all q1 when

h�2
0i>

1

3
½1� 2ð�j0EÞ1=2�: (11)

This criterion indicates that the upper part of the branch
between the green stars in Figs. 3(a) and 3(b) should be
stable, while the lower parts close to �� should be unstable
[32]. This is similar to the Eckhaus instability criterion.
Such a result suggests that the system is stuck once the
dynamics hits the stable part of the steady-state branch, and
as a consequence, it cannot evolve toward the minimum of
L at � ¼ �L.

Full dynamics.—These results are confirmed by the full
numerical solution of Eq. (4) starting from small random
perturbations of a flat state in a system of size L ¼ 500.
The results are shown in Fig. 4. First, and as expected, we
find stable dynamics for j0E <�1=4.

For destabilizing electromigration j0E > 0, perpetual
coarsening is found, as shown on Fig. 4(a), and after a
transient related to the linear instability, the dynamics
follows the steady-state branch in the (�, A) plane, as
shown in Fig. 2(a). We also confirm the scaling laws
given above in Fig. 2(b) and find the prefactors:

� � 1:4ðj0EÞ1=2t1=2 and A � 0:22j0Et1=2. The ratio of these
prefactors is in perfect agreement with the asymptotic
behavior of the steady states discussed above

A � 0:16ðj0EÞ1=2�.
For weakly stabilizing electromigration�1=4< j0E < 0,

the dynamics starts with a rapid increase of the amplitude
at the most unstable wavelength of the linear instability, as
shown in Fig. 3(a). Then, the average wavelength increases
before the dynamics hits the steady-state branch at � ¼ ��,

as shown in Fig. 3(a). When the dynamics reaches the
steady-state branch, it stops, as expected from the above
prediction of steady-state stability. As a consequence, the
system never reaches the minimum of L along the steady-
state branch.
In order to check further the stability of the steady-state

branch, we have performed simulations in boxes of width
around 80 periods starting with periodic steady states with
small perturbations. These simulations confirm the stability
of the upper part of the branch and the Eckhaus-like insta-
bility of the lower part, in quantitative agreement with the
condition (11). As seen in Fig. 3(a), the instability does not
lead to a trajectory of the system along the steady-state
branch in the (�, A) plane. Instead, the trajectory escapes
from the branch and returns to it, stopping in the same
region as the dynamics from flat initial conditions.
Fig. 3(b) summarizes the evolution of the different length-
scales as a function of j0E.
Conclusions and perspectives.—In summary, we have

studied the control of the faceting instability by means of
electromigration. When electromigration is destabilizing,
perpetual coarsening is found with a coarsening exponent
1=2. For strong stabilizing electromigration, the surface is
stable. Under weakly stabilizing electromigration, the sur-
face exhibits a periodic cellular structure with a nonli-
nearly selected wavelength.
In the literature, nonlinear wavelength selection in

mound growth [16], atomic step meandering [17], ion
sputtering [33], and quantum dot formation in heteroepi-
taxial growth [34] has been interpreted as resulting from an
instability of steady states, which stops at some point [18].
This scenario is usually referred to as interrupted coarsen-
ing [18]. However, the nonlinear wavelength selection
scenario presented in this Letter does not correspond to
interrupted coarsening, or to another instability of steady

tim
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FIG. 4 (color online). Full dynamics and coarsening—Left:
Surface height hðx; tÞ as a function of space for different times in
the three different regimes: (a) j0E ¼ 0:45, (b) j0E ¼ �0:15,
(c) j0E ¼ �0:3. Right: Corresponding spatiotemporal portrait
of the extrema of the height profile.
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states such as in the Eckhaus instability [19]. Indeed, we
only observe coarsening before the dynamics hits the
steady-state branch. Once the system reaches a steady
state, it is stable and the evolution stops.

These results may provide hints to understand other
nonlinear wavelength selection scenarios obtained in the
literature, such as in the combination of growth and facet-
ing as discussed in Refs. [29,30] (where nonlinear wave-
length selection occurs between a coarsening regime, and a
chaotic regime). More generally, we hope that our work
will provide milestones toward novel methods to control
the size of nanostructures emerging from surface morpho-
logical instabilities.
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