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Silicene is a monolayer of silicon atoms forming a two-dimensional honeycomb lattice, which shares

almost every remarkable property with graphene. The low-energy structure of silicene is described by

Dirac electrons with relatively large spin-orbit interactions due to its buckled structure. The key

observation is that the band structure is controllable by applying electric field to silicene. We explore

the phase diagram of silicene together with exchange fieldM and by applying electric field Ez. A quantum

anomalous Hall (QAH) insulator, valley polarized metal (VPM), marginal valley polarized metal

(M-VPM), quantum spin Hall insulator, and band insulator appear. They are characterized by the

Chern numbers and/or by the edge modes of a nanoribbon. It is intriguing that electrons have been

moved from a conduction band at the K point to a valence band at the K0 point for Ez > 0 in the VPM. We

find in the QAH phase that almost flat gapless edge modes emerge and that spins form a momentum-space

Skyrmion to yield the Chern number. It is remarkable that a topological quantum phase transition can be

induced simply by changing electric field in a single silicene sheet.
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Silicene, a monolayer of silicon atoms forming a
two-dimensional honeycomb lattice, has been synthesized
[1–3] and attracts much attention [4–8] recently. Almost
every striking property of graphene could be transferred to
this innovative material. It has, additionally, a salient fea-
ture, that is a buckled structure [4,5], owing to a large ionic
radius of silicon. Silicene has a relatively large spin-orbit
(SO) gap of 1.55 meV, which provides a mass to Dirac
electrons. Furthermore, we may control experimentally the
mass [7] by applying the electric field Ez. Silicene under-
goes a topological phase transition from a quantum spin
Hall (QSH) state to a band insulator (BI) as jEzj increases
[7]. AQSH state is characterized by a full insulating gap in
the bulk and helical gapless edges [9–12].

There exits another state of matter in graphene [13–15],
that is a quantum anomalous Hall (QAH) state [16–19],
characterized by a full insulating gap in the bulk and chiral
gapless edges. Unlike the quantum Hall effect, which
arises from Landau-level quantization in a strong magnetic
field, the QAH effect is induced by internal magnetization
and SO coupling.

In this paper we analyze the band structure of silicene
together with exchange field M and by applying electric
field Ez to silicene. We explore the phase diagram in the
Ez-M plane. Silicene has a rich varieties of phases because
the electric field Ez and the exchange fieldM have different
effects on the conduction and valence bands characterized
by the spin and valley indices. There are insulator phases,
which are the QSH, QAH, and BI phases. There emerges a
new type of metal phase, the valley-polarized metal (VPM)
phase, where electrons have been moved from a conduc-
tion band at the K point to a valence band at the K0 point
for Ez > 0. Such a phase is utterly unknown in literature as
far as we are aware of. There are also metallic states on

phase boundaries, which are metal (M), marginal-VPM
(M-VPM) and spin VPM (SVPM) states. All these phases
and states are characterized by the Chern numbers and/or
by the edge modes of a nanoribbon. It is possible to materi-
alize any one of them by controlling Ez at an appropriate
value ofM. Furthermore, as we have pointed out elsewhere
[7], by applying an inhomogeneous field Ez, it is possible
to materialize some of these topological phases together
with states on the phase boundaries simultaneously in a
single silicene sheet.
Silicene consists of a honeycomb lattice of silicon atoms

with two sublattices made of A sites and B sites. The states
near the Fermi energy are� orbitals residing near theK and
K0 points at opposite corners of the hexagonal Brillouin
zone.We refer to theK orK0 point also as theK� point with

the valley index � ¼ �1. We take a silicene sheet on the
xy plane, and apply the electric fieldEz perpendicular to the
plane. Due to the buckled structure the two sublattice planes
are separated by a distance, which we denote by 2‘ with

‘ ¼ 0:23 �A. It generates a staggered sublattice potential
/ 2‘Ez between silicon atoms at A sites and B sites.
The silicene system is described by the four-band

second-nearest-neighbor tight binding model,
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where cyi� creates an electron with spin polarization � at
site i, and hi; ji=hhi; jii run over all the nearest or next-
nearest neighbor hopping sites. We explain each term.
(i) The first term represents the usual nearest-neighbor
hopping with the transfer energy t ¼ 1:6 eV. (ii) The sec-
ond term represents the effective SO coupling with �SO ¼
3:9 meV, where � ¼ ð�x; �y; �zÞ is the Pauli matrix of

spin, with �ij ¼ þ1 if the next-nearest-neighboring hop-

ping is anticlockwise and �ij ¼ �1 if it is clockwise with

respect to the positive z axis. (iii) The third term represents
the first Rashba SO coupling associated with the nearest
neighbor hopping, which is induced by external electric
field [14,20,21]. It satisfies �R1ð0Þ ¼ 0 and becomes of the

order of 10 �eV at the critical electric field Ec ¼ �SO=‘ ¼
17 meV �A�1. (iv) The forth term represents the second
Rashba SO coupling with �R2¼0:7meV associated with
the next-nearest neighbor hopping term, where �i ¼ �1

for the A (B) site, and d̂ij ¼ dij=jdijj with the vector

dij connecting two sites i and j in the same sublattice.

(v) The fifth term is the staggered sublattice potential
term. (vi) The sixth term represents the exchange magne-
tization: Exchange field M may arise due to proximity
coupling to a ferromagnet such as depositing Fe atoms to
the silicene surface or depositing silicene to a ferromag-
netic insulating substrate, as has been argued for graphene
[13–15]. The Hamiltonian (1) can also be used to describe
germanene, which is a honeycomb structure of germa-
nium [5,6], where various parameters are t¼1:3 eV,
�SO ¼ 43 meV, �R2 ¼ 10:7 meV and ‘¼0:33 �A.

In this Letter, we derive the topological phase diagram
in the Ez-M plane and make its physical interpretation.
The topological quantum numbers are the Chern number
C and the Z2 index. If the spin sz is a good quantum
number, the Z2 index is identical to the spin-Chern num-
ber Cs. They are defined when the state is gapped and
when the Fermi level is taken within the gap, and given by
C ¼ Cþ þ C� and Cs ¼ 1

2 ðCþ � C�Þ, where C� is the

summation of the Berry curvature in momentum space
over all occupied states of electrons with sz ¼ �1. They
are well defined even if the spin is not a good quantum
number [15,21,22]. In the present model, the spin is not a
good quantum number because of spin mixing due to the
Rashba couplings �R1 and �R2, and the resulting angular
momentum eigenstates are indexed by the spin chi-
rality s ¼ �1. We can calculate these numbers at each
point in the Ez-M plane by using the standard formulas
[13–15].

We present our result on the phase diagram in Fig. 1. We
show later how to derive the phase boundaries based on the
low-energy Dirac theory. We have also calculated the band
structure of a silicene nanoribbon with zigzag edges, which
we give in Fig. 2 for typical points in the phase diagram.
The topological numbers are ðC;CsÞ ¼ ð0; 0Þ in the BI
phase, (0, 1) in the QSH phase, (2, 0) in the QAH phase
with M> 0 and (� 2, 0) in the QAH phase with M< 0.

In all these states, the band gap is open, where the Fermi
level is present, and they are insulators.
We first discuss the system at Ez ¼ 0 and compare our

results with those previously obtained in graphene [13–15].
The main difference is the appearance of almost flat edge
modes in our system (Fig. 3). This occurs because the
Rashba interactions are different between these two sys-
tems. We have �R1 ¼ 0 for Ez ¼ 0 and �R2 ¼ 0 at the K
and K0 points in silicene, but �R1 � 0 and �R2 ¼ 0 in
graphene. Nevertheless, the difference is only quantitative.
As far as the topological properties are concerned, there
exists no difference. Indeed, in these two systems, the
Chern number is identical in each corresponding phase
together with quantized Hall conductivity, and the edge
states support the edge current. However, the group veloc-
ity of the edge modes is extremely small due to the almost
flat gapless modes in silicene.
Our most important result is the VPM phase, which

appears in such regions thatEzM � 0 and occupies a major
part of the phase diagram. A part of the conduction (va-
lence) band is above (below) the Fermi level at the K (K0)
point for Ez > 0, as is observed in Fig. 2 (VPM). Hence,
electrons are moved from the K valley to the K0 valley, as
implies the valley polarization. The phase is characterized
by the property that it is a metallic state though gaps are
open both at the K and K0 points. We note that the Chern
and spin-Chern numbers are ill-defined in the VPM phase,
since the Fermi level does not lie inside the band gaps at the
K and K0 points simultaneously.
There existM-VPM states on phase boundaries indicated

by heavy lines in the phase diagram, where the conduction
and valence bands touch the Fermi surface at the K and K0
points, respectively, for Ez > 0. On the other hand, in

FIG. 1 (color online). Phase diagram in the Ez-M plane. Heavy
lines represent phase boundaries, where the system becomes
metallic. Chern and spin-Chern numbers (C, Cs) are well defined
and given in insulator phases. Dotted lines represent the points
where the band gap closes, which are within the VPM phase.
A circle shows a point where the energy spectrum is calculated
and shown in Fig. 2.
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SVPM states, the conduction and valence bands touch the
Fermi surface both at the K and K0 points. We expect
topological quantum critical phenomena in these states.

In order to explore the physics underlying the phase
diagram, we analyze the low-energy effective Hamiltonian
derived from the tight binding model (1). It is described by
the Dirac theory around the K� point as

H� ¼ @vFð�kx	x þ ky	yÞ þ �	zh11 � ‘Ez	z þM�z

þ �R1ð�	x�y � 	y�xÞ=2; (2)

with h11 ¼ �SO�z þ a�R2ðky�x � kx�yÞ, where 	a is the

Pauli matrix of the sublattice pseudospin, vF ¼
ffiffi
3

p
2 at is the

Fermi velocity, and a ¼ 3:86 �A is the lattice constant.
The Hamiltonian Hþ explicitly reads

Eð1; 1Þ @vFk� ia�R2k� 0

@vFkþ Eð1;�1Þ �i�R1 �ia�R2k�
�ia�R2kþ i�R1 Eð�1; 1Þ @vFk�

0 ia�R1kþ @vFkþ Eð�1;�1Þ

0
BBBBB@

1
CCCCCA (3)

in the basis fc A"; c B"; c A#; c B#gt, where k� ¼ kx � iky,

and the diagonal elements are

Eðsz; tzÞ ¼ �SOsztz � ‘Eztz þMsz; (4)

with the spin sz ¼ �1 and the sublattice pseudospin
tz ¼ �1. They are not good quantum numbers in general.

However, since �R1 and �R2 are very small with respect to
the other parameters, it is a good approximation to set
�R1 ¼ �R2 ¼ 0 in most cases. Thus, the spin sz is almost
a good quantum number in general. An exceptional case
occurs when two Dirac cones collapse and cross each
other, forming a QAH state after taking into account the
effect of �R2 � 0, as we soon discuss.
We diagonalize the Hamiltonian (3) and obtain four

energy levels. When two energy levels coincide, the band

FIG. 3 (color online). The energy spectrum of a QAH state.
Gray curves are for a nanoribbon, which are identical to Fig. 2
(QAH). Heavy green curves represent the energy spectrum of the
bulk, calculated independently. A gap opens in the bulk spec-
trum, where almost flat gapless modes appear at the edges of a
nanoribbon. A red (blue) arrow indicates the spin direction away
from the Fermi level.
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gap becomes zero, as found in Fig. 2 (M, VMP3, VMP2,
SVPM). This occurs at the K and K0 points, where k� ¼ 0.
Let us temporarily neglect �R1 because it is very small.
Then, the band closes when Eðsz; tzÞ ¼ Eðs0z; t0zÞ with (4).
They yield four lines described by Ez ¼ ��SO=‘ for
jMj � �SO, M ¼ ��SO for jEzj � �SO=‘, and two lines
by M ¼ �ð‘�SO=�SOÞEz outside the square. They are
illustrated by dotted lines in Fig. 1. These lines are modi-
fied by the nonzero effect of �R1, but the modification is too
small to be recognized in Fig. 1. See also (5) for the typical
order of correction.

The Hamiltonian can be diagonalized analytically in
some cases. First, along the Ez axis in the phase diagram
(Fig. 1), we have already demonstrated [7] that a topologi-
cal phase transition occurs along the Ez axis from the QSH
insulator [Fig. 2 (QSH)] to the band insulator [Fig. 2 (BI)].
The critical point is given by

Ec ¼ � 2�SO

‘

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð�=‘Þ2p � 1

ð�=‘Þ2
#
; (5)

where we have set �R1ðEzÞ ¼ �Ez with � ¼ 10�3 �A. Note
that the effect of �R1 is negligible, ð�=‘Þ2 ¼ 10�4. The
SVPM realizes at the critical point, where helical currents
flow in the bulk.

Second, along the M axis, the first Rashba interaction
vanishes (�R1 ¼ 0), and the energy spectrum reads

E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�2

R2k
2 þ ðM� s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
SO þ @

2v2
Fk

2
q

Þ2
r

: (6)

We study a topological phase transition along the M axis
based on this formula (6). When M ¼ 0, there are two
spin-degenerate Dirac cones for conduction and valence
bands with a gap between them [Fig. 2 (QSH1)]. As M
increases, the spin-up (spin-down) Dirac cones are pushed
upward (downward) [Fig. 2 (QSH2)]. When jMj �
�SOð1þ a2�2

R2=@
2v2

FÞ, the band gap is given as � ¼ jM�
s�SOj at k ¼ 0, and it closes at M ¼ s�SO: This is a
topological phase transition point [Fig. 2 (M)]. Let us
temporally assume �R2 ¼ 0. Then, as jMj increases fur-
ther, the two Dirac cones cross each other making a circle
around each K� point. Actually, the Rashba interaction

(�R2 � 0) mixes up and down spins, turning the crossing
points into the anticrossing points, and opens a gap to form
the QAH insulating state [Fig. 2 (QAH) and Fig. 3].

When jMj> �SOð1þ a2�2
R2=@

2v2
FÞ, the gap is given by

� ¼ a�R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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at

kac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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SOÞ � a2�2

R2�
2
SOð2@2v2

F þ a2�2
R2Þ

q
@vFð@2v2

F þ a2�2
R2Þ

:

(8)

We present the energy spectrum (6) and the Berry curva-
ture calculated by using the corresponding wave function
at M ¼ 2�SO in Fig. 4. As explained there, spins rotates
across the anticrossing point, generating a Skyrmion
spin texture in the momentum space. This is consistent
with the previous study for graphene [14]. The radius of the
anticrossing circles is given by (8). We comment that
the gap (7) is of the order of �eV when M is of the order
of meV.
We now examine a point in the phase diagram such that

MEz � 0. In all regions where the effects of �R1 and �R2

are negligible, the energy spectrum is derived as

E ¼ szM�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@
2v2

Fk
2 þ ð‘Ez � �sz�SOÞ2

q
: (9)

The effect of Ez is to change the mass of the Dirac electron.
Let us increase Ez from Ez ¼ 0 at a fixed value of M. The
mass decreases (increases) for the Dirac cone characterized
by �sz ¼ þ1 (�sz ¼ �1) until Ez ¼ �SO=‘, but the be-
havior becomes opposite after Ez ¼ �SO=‘. As a result the
tip of each Dirac cone is pushed either downward or
upward as indicated in Fig. 2. Consequently the valley
symmetry is broken. Note that the energy difference at
each momentum @k between the conduction and valence
bands with the same spin is given by

�E� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@
2v2

Fk
2 þ ð‘Ez � �SOÞ2

q
(10)

for �sz ¼ �1, and this is independent of M. Thus, the
difference is smaller for the up-spin Dirac cones at the
K point, but this is opposite at the K0 point.

FIG. 4 (color online). (a) Berry curvature, (b) spin, and
(c) band structure of a QAH state calculated based on formula (6)
in the Dirac theory. Gray curves represent the energy spectrum of
a nanoribbon, which are identical to Fig. 3. Spins rotate by the
Rashba interaction near the Fermi level, generating a Skyrmion
spin texture in the momentum space. It generates a nontrivial
Berry curvature along the anticrossing circle whose radius given
by (8). The integration of the Berry curvature gives the Chern
number C ¼ 2, since there are two Skyrmions each of which
yields C ¼ 1.
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We finally determine the phase boundary. It is deter-
mined as a boundary between insulating and metallic
states. The Chern and spin-Chern numbers are quantized
in insulating states, while they are ill defined in metallic
states. As we have seen, each Dirac cone moves upward or
downward oppositely at the K and K0 points. Because of
this phenomenon the system can become metallic though
the gap is open both at the K and K0 points. This is the
VPM state. It occurs when one valence band crosses
the Fermi level. The condition yields four heavy lines
(M ¼ ��so � ‘Ez) in the phase diagram (Fig. 1). On the
other hand, the gap formula (7) determines the boundary
between the QAH phase and the VPM phase, which are the
parabolic curves in the phase diagram (Fig. 1). In passing,
we comment that the VPM phase is metallic in nature and
does not have mobility gap. Thus, the transition from
insulator to VPMmight accompany a mobility gap closing.

I am very much grateful to N. Nagaosa for many fruitful
discussions on the subject. This work was supported in part
by Grants-in-Aid for Scientific Research from the Ministry
of Education, Science, Sports and Culture No. 22740196.

[1] B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini,
B. Ealet, and B. Aufray, Appl. Phys. Lett. 97, 223109 (2010).

[2] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E.
Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and
G. L. Lay, Phys. Rev. Lett. 108, 155501 (2012).

[3] C.-L. Lin, R. Arafune, K. Kawahara, N. Tsukahara,
E. Minamitani, Y. Kim, N. Takagi, and M. Kawai, Appl.
Phys. Express 5, 045802 (2012).

[4] K. Takeda and K. Shiraishi, Phys. Rev. B 50, 14916 (1994).

[5] C.-C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107,
076802 (2011).

[6] C.-C. Liu, H. Jiang, and Y. Yao, Phys. Rev. B 84, 195430
(2011).

[7] M. Ezawa, New J. Phys. 14, 033003 (2012).
[8] M. Ezawa, J. Phys. Soc. Jpn. 81, 064705 (2012).
[9] M. Z. Hasan and C. Kane, Rev. Mod. Phys. 82, 3045

(2010).
[10] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057

(2011).
[11] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801

(2005).
[12] C. Wu, B.A. Bernevig, and S.-C. Zhang, Phys. Rev. Lett.

96, 106401 (2006).
[13] Z. Qiao, S. A. Yang, W. Feng, W.-K. Tse, J. Ding,

Y. Yao, J. Wang, and Q. Niu, Phys. Rev. B 82, 161414R
(2010).

[14] W.K. Tse, Z. Qiao, Y. Yao, A.H. MacDonald, and Q. Niu,
Phys. Rev. B 83, 155447 (2011).

[15] Y. Yang, Z. Xu, L. Sheng, B. Wang, D. Y. Xing, and
D.N. Sheng, Phys. Rev. Lett. 107, 066602 (2011).

[16] M. Onoda and N. Nagaosa, Phys. Rev. Lett. 90, 206601
(2003).

[17] C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang,
Phys. Rev. Lett. 101, 146802 (2008).

[18] Z. Qiao, H. Jiang, X. Li, Y. Yao, and Q. Niu, Phys. Rev. B
85, 115439 (2012).

[19] J. Ding, Z. Qiao, W. Feng, Y. Yao, and Q. Niu, Phys. Rev.
B 84, 195444 (2011).

[20] H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman,
and A.H. MacDonald, Phys. Rev. B 74, 165310
(2006).

[21] D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D.M. Haldane,
Phys. Rev. Lett. 97, 036808 (2006).

[22] E. Prodan, Phys. Rev. B 80, 125327 (2009).

PRL 109, 055502 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

3 AUGUST 2012

055502-5

http://dx.doi.org/10.1063/1.3524215
http://dx.doi.org/10.1103/PhysRevLett.108.155501
http://dx.doi.org/10.1143/APEX.5.045802
http://dx.doi.org/10.1143/APEX.5.045802
http://dx.doi.org/10.1103/PhysRevB.50.14916
http://dx.doi.org/10.1103/PhysRevLett.107.076802
http://dx.doi.org/10.1103/PhysRevLett.107.076802
http://dx.doi.org/10.1103/PhysRevB.84.195430
http://dx.doi.org/10.1103/PhysRevB.84.195430
http://dx.doi.org/10.1088/1367-2630/14/3/033003
http://dx.doi.org/10.1143/JPSJ.81.064705
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevB.82.161414
http://dx.doi.org/10.1103/PhysRevB.82.161414
http://dx.doi.org/10.1103/PhysRevB.83.155447
http://dx.doi.org/10.1103/PhysRevLett.107.066602
http://dx.doi.org/10.1103/PhysRevLett.90.206601
http://dx.doi.org/10.1103/PhysRevLett.90.206601
http://dx.doi.org/10.1103/PhysRevLett.101.146802
http://dx.doi.org/10.1103/PhysRevB.85.115439
http://dx.doi.org/10.1103/PhysRevB.85.115439
http://dx.doi.org/10.1103/PhysRevB.84.195444
http://dx.doi.org/10.1103/PhysRevB.84.195444
http://dx.doi.org/10.1103/PhysRevB.74.165310
http://dx.doi.org/10.1103/PhysRevB.74.165310
http://dx.doi.org/10.1103/PhysRevLett.97.036808
http://dx.doi.org/10.1103/PhysRevB.80.125327

