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A series of Mach-number- (M) invariant scalings is derived for compressible turbulent boundary layers

(CTBLs), leading to a viscosity weighted transformation for the mean-velocity profile that is superior to

van Driest transformation. The theory is validated by direct numerical simulation of spatially developing

CTBLs withM up to 6. A boundary layer edge is introduced to compare differentM flows and is shown to

better present the M-invariant multilayer structure of CTBLs. The new scalings derived from the kinetic

energy balance substantiate Morkovin’s hypothesis and promise accurate prediction of the mean profiles

of CTBLs.
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The compressible turbulent boundary layer (CTBL) has
received considerable attention because of its relevance to
high speed aircraft, flow over blades, etc. Compared to the
incompressible turbulent boundary layer (ITBL), the CTBL
is less clear, owing to the compressibility and thermody-
namic effects; consequently, it presents a tremendous chal-
lenge to theory, modeling, and computation [1,2]. Efforts
have long been devoted to searching for transformations or
scalings to reduce the mean-field distribution of the CTBL
to its incompressible form. A moderate success was
achieved for the mean-velocity profile (MVP) via
van Driest transformation (VDT) [3] and for the Reynolds
stress via Morkovin’s scaling [1,4]. These Mach-number-
(M) invariant forms serve as important standards to validate
turbulence models and numerical simulations of the CTBL
[1,5,6]. This Letter proposes a new scaling for mapping the
MVP with sound physics and higher accuracy.

VDT, expressed by �uþvD ¼ R
�uþ
0

ffiffiffiffiffiffiffi
��þp

d �uþ where the plus

superscript denotes wall unit normalization [2], is the most
important relation in compressible turbulent wall-bounded
flows. It retains the log law of incompressible flows, i.e.,
�uþvD ¼ ��1 lnyþ þ B, where � � 0:41 and B � 5:2 for the
quasiadiabatic wall condition [7]. VDT can be derived

under two assumptions: (1) �ð ��u0v0Þþ is invariant to M;

and (2) Prandtl’s mixing length ‘þm ¼ ð�u0v0Þþ1=2=
ð@ �u=@yÞþ is also M invariant [5,6], and thus Prandtl’s
proposal of ‘þm ¼ �yþ holds in the log layer [3]. The two

assumptions give rise to theM invariance of
ffiffiffiffiffiffiffi
��þp

@ �uþ=@yþ
and further to VDT. The first assumption has been con-
firmed and referred to as Morkovin’s scaling [4,8]. The
second is not thoroughly studied [6], however. Over the
past decades, a few experiments showed that ‘þm had an
observable, although not strong, M effect, particularly in
the outer part of the boundary layer [5,9]. Further evidence
comes from direct numerical simulation (DNS) data [10],

which show that the van Driest transformed MVP does not
collapse well in the wake region, invalidating the M in-

variance of
ffiffiffiffiffiffiffi
��þp

@ �uþ=@yþ and thus the second assumption.
After van Driest, Maise et al. [9] presented a transfor-

mation for the wake region, and Huang et al. [7] proposed a
composite transformation by considering the near wall
variation of ‘þm . Nevertheless, no existing transformation
can cope with the whole MVP. The present work finds an
M-invariant mixing length to resolve this problem. The
analysis is based on DNS of spatially developing, zero-
pressure-gradient, flat plate CTBLs in the quasiadiabatic
isothermal wall condition, whose computational details are
explained in Ref. [11].
TheCTBLs have two control parameters, Reynolds num-

ber (Re) andM; in order to compare differentM flows, the
first important issue is to define an edge of the CTBL, and
thus a Re. There is no widely accepted definition of this
edge. For example, Lagha et al. [12] used the�99 defined by
�uðy ¼ �99Þ ¼ 99% �u1 while Guarini et al. [13] used
van Driest transformed �vD

99 defined by �uvDðy ¼ �vD
99 Þ ¼

99% �uvD1 .
We suggest an extension of Townsend’s structure

parameter, defined as the ratio of the Reynolds shear stress
to the turbulent kinetic energy [1], to define a boundary
layer thickness. The extension goes to all the components

of the Reynolds stress tensor: auiuj ¼ ju0iu0j=u0ku0kj, where
auiuj are named Reynolds stress structure parameters

(RSSPs). Morkovin’s scaling asserts that RSSPs are invari-
ant toM at the same Re.We argue that RSSPs can be traced
to coherent vortices in a boundary layer, thus displaying
multilayer behavior. Therefore, a suitable CTBL thickness
can be located through identifying the M-invariant multi-
layer features of RSSPs.
In Fig. 1(a), the RSSPs for different M are presented

using Re� with the wall-normal coordinate scaled by �99,
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following convention. In the bulk region, one finds quasi-
constant auiuj [1,8], but farther away from the wall, the M

effect is significant. We argue that the observed M effect
is due to improper �99 and Re�. In Fig. 1(b), the RSSPs
are replotted using Re�vw

where �vw is the thickness of

avv ¼ aww. Comparing Figs. 1(a) and 1(b), one finds that
the M-invariant region extends to �vu � 1:2�vw, signifi-
cantly above �99, where �vu is the thickness of avv ¼ auu
(above �vu, an apparentM effect appears, possibly because
the intermittency there is influenced by the Mach cone of
flow disturbances [1,8]). Note that the significance of �vw

over �99 becomes more obvious if one notices that it is not
the only M-invariant thickness, but so are several other
layer thicknesses, including the viscous sublayer, the buffer
layer, the bulk flow region, and the entrainment or inter-
mittent layer, which are made up of an M-invariant
four-layer structure that we believe is a general feature of
the CTBL.

The validity of �vw as a suitable thickness for the CTBL
is further confirmed by calculating the skewness and flat-
ness factors. In previous studies, they were found to vary
withM in the entrainment or intermittent layer [1,8]. In our
plotting, however, they areM invariant up to �vu at a given
Re�vw

, agreeing with Morkovin’s scaling. This agreement

implies that the previously observed M dependence is at
least partially due to the inappropriate boundary layer
thickness and Re used. Hereinafter, �vw and Re�vw

are

applied to compare different M flows.
We now discuss the form of the M-invariant mixing

length. The turbulent kinetic energy (TKE) equation [14]
can be written as C ¼ Pþ T þ�þDþM��, where
C, P, T,�,D,M, and� represent, respectively, advection,
production, transport, pressure dilatation, viscous diffu-
sion, mass flux associated with density fluctuations, and
viscous dissipation. P almost entirely comes from

� �� gu00v00ð@~u=@yÞ, where the tilde denotes the Favre

average defined by ~f ¼ �f= �� and the double prime de-
notes Favre fluctuation. The �, at moderate M, can be

reduced to ��!0
i!

0
i [14]. Above the buffer layer and be-

neath the uniform flow, P and� are in quasibalance [1] and
the ratio � � P=� negligibly depends on M according to

our DNS data. In the literature, !0
i!

0
i
þ is also found to be

independent of M [12]. As a result, the M invariance of

!0
i!

0
i
þ, � ��þ gu00v00þ (denoted by W hereinafter), and �

yield an important finding that ð@~u=@yÞþ= ��þ, instead offfiffiffiffiffiffiffi
��þp

@ �uþ=@yþ, is M invariant. A direct consequence is
that the M-invariant scaling of Prandtl’s mixing length is

‘þMI ¼ ð ffiffiffiffiffiffiffi
��þp

��þÞ‘þm , where ‘þm is written in the Favre form:

‘þm ¼ ð g�u00v00Þþ1=2=ð@~uþ=@yþÞ.
We briefly discuss the physical bases of the findings. It is

long known that compressibility effects owing to dilatation
and fluctuation of thermodynamic quantities are negligibly
small in wall-bounded turbulence, at least at moderate M

[8]. The � is reduced to ��!0
i!

0
i based on this fact [14].

The !0
i!

0
i
þ, i.e., enstrophy, is mainly generated by vortex

stretching as in incompressible turbulence [15], thus dis-
playing M invariance. The W, the Reynolds shear stress in
the Favre form, actually has a better M-invariant property
than the conventional Reynolds stress, possibly owing to
the fact that Favre averaging, as is well known, best
demonstrates the similarity between the compressible and
incompressible Navier-Stokes equations [6]. And finally, P
and � being in quasibalance in the bulk of a boundary
layer [1], � is insensitive to M. The rationale for M
invariance of ð@~u=@yÞþ= ��þ can be explained as follows.
The wall-normalized viscosity away from the wall de-
creases with increasing M, thus reducing energy dissipa-
tion, and consequently, less slowing down the fluid. This
gentler ð@~u=@yÞþ can be restored to the ITBL one by
ð@~u=@yÞþ= ��þ (denoted by S hereinafter).
The above arguments lead further to a series of

M-invariant scalings for flow quantities such as the eddy
viscosity coefficient �þ

t [5], the Reynolds stress dissipation
length Lþ

uv [5], the Kolmogorov length �þ [1], and the
TKE budgets Bþ

TKE [14]. Specifically, the M-invariant

FIG. 1 (color online). Wall-normal distributions of auiuj ¼ ju0iu0j=u0ku0kj versus (a) y=�99 at Re� ¼ ��w �u��99= ��w ¼ 575 and
(b) y=�vw at Re�vw

¼ ��w �u��vw= ��w ¼ 550.
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scalings of the above quantities are ð ��þ ��þÞ�þ
t ,

ð ffiffiffiffiffiffiffi
��þp

��þÞLþ
uv,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��þ= ��þp

�þ, and Bþ
TKE= ��þ, respectively.

Morkovin’s hypothesis claimed that any difference (of the
large scale motion) between CTBL and ITBL could be
removed by incorporating the wall-normal variations of ��,
��, and thermal conductivity �k. The above M-invariant
scalings specify the otherwise ‘‘vague’’ Morkovin’s hy-
pothesis by extending to quantities other than Reynolds
stress, and by incorporating both �� and �� (note �k / ��). In

addition, the M-invariant scaling of �þ
MI � ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��þ= ��þp Þ�þ
suggests that Morkovin’s hypothesis also applies to small
scale motion, extending his original claim. As shown in
Fig. 2, �þ

MI is remarkably M invariant throughout the
boundary layer while �þ in the inset is strongly influenced
by M owing to the apparent M dependence of ��þ and ��þ.
Note that, considering the definition of �þ

MI, Fig. 2 also

confirms the M invariance of !0
i!

0
i
þ and �þ= ��þ.

Figure 3 shows that ‘þMI depends little on M across the
boundary layer. Above the buffer layer, theM invariance of
‘þMI is promised by the above derivation. In the near wall
region, both S andW have a slightM effect, which is due to
the large gradients of the mean fluid properties there.
The M effects of S and W are similar, resulting in the M
invariance of ‘þMI in the near wall region. Comparing ‘þm
and ‘þMI, the scaling coefficient

ffiffiffiffiffiffiffi
��þp

��þ � ð ��þÞ�0:26 [1]
is clearly less than one at large M and y=�vw, so as to
remove the slight increase of ‘þm with increasing M ob-
served previously [9]. For a M ¼ 6, Re�vw

¼ 550 CTBL,ffiffiffiffiffiffiffi
��þp

��þ is about 0.8 at �vw. It does not have a significant
effect in the log coordinate (Fig. 3) but affects the MVP
after integration.

Now we are able to derive a transformation to map the
whole MVP of the CTBL to that of the ITBL. The M
invariance of S implies a viscosity weighted transforma-

tion: uþMI ¼
R
~uþ
0

1
��þ d~uþ. Since S has a slight M effect

below the log layer, as mentioned above, a refined trans-
formation is derived in the following. For a CTBL, the
wall-normal integrated mean momentum equation [14] in

terms of ‘þMI reads ‘
þ
MI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��þ � ��þ2S

p
=S, where ��þ is the

total shear stress. Using the global M invariance of ‘þMI, a
refined transformation is obtained as

uþMI ¼
Z ~uþ

0

g

��þ d~uþ;

g ¼ � S
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS2Þ2 þ ð1� ��þ2SÞ

q
ð1� ��þ2SÞ : (1)

Note ��þ is set to one in Eq. (1). The rationale is as follows:
in the constant stress layer, ��þ � 1; above the constant
stress layer, g � 1 independent of ��þ, which agrees with
the M invariance of S.
Figure 4 compares the refined viscosity weighted trans-

formation with VDT. The whole MVP of the CTBL col-
lapses to the empirical MVP of the ITBL [Eq. (4) in
Ref. [14] ] with negligible M effect. In contrast, the
van Driest transformed MVPs increase with increasing
M, especially in the wake region (lower right inset). In
essence, the improvement is attributed to the correct quan-
tification of the dependence of ‘þm on the variation of the
mean fluid properties. In the log layer, the scaling coeffi-

cient of ‘þm , i.e.,
ffiffiffiffiffiffiffi
��þp

��þ, is very close to one, which
explains the good performance of VDT there. Farther

away from the wall,
ffiffiffiffiffiffiffi
��þp

��þ deviates from one and the

FIG. 2 (color online). M invariance of the density viscosity

rescaled Kolmogorov length �þ
MI ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��þ= ��þp Þ�þ at Re�vw
¼

550, where �þ ¼ ð ��þ3=�þÞ1=4= ffiffiffiffiffiffiffi
��þp

(inset) is the normal

Kolmogorov length and �þ
MI ¼ ð�þ= ��þÞ�1=4 � ð!0

i!
0
i
þÞ�1=4.

The dashed straight line shows �þ
MI ¼ ð�yþÞ1=4 in the log layer.

FIG. 3 (color online). Global M invariance of density vis-

cosity rescaled Prandtl’s mixing length ‘þMI ¼
ffiffiffiffiffiffiffi
��þp

��þ‘þm at
Re�vw

¼ 550.
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deviation increases with M, leading to a noticeable modi-
fication to VDT after integration.

A discussion is in order. The success of �vw indicates the
validity of the concept of the ‘‘order function’’ (here auiuj)

in identifying the multilayer structure in wall turbulence,
which has been well tested in the study of incompressible
channel or pipe and boundary layer flows [16–18]. These
studies suggest that the multilayer structure is the result of
symmetry breaking in the mean field induced by turbulent
fluctuations and the order functions capture the transitions
between different layer states. Here, we show that the
multilayer structure exists also in the compressible turbu-
lent boundary layer and is independent ofM when revealed
by auiuj .

The new M-invariant scalings and transformation quan-
tify the influence of the variation of the mean fluid prop-
erties on the turbulence in CTBLs, and this quantification
is critical for validating turbulence theories and computa-
tions. In addition, a prediction of the mean profiles of the
CTBL is possible now. Specifically, the mean profiles of
density, velocity, and temperature of CTBLs can be pre-
dicted by combining the inverse transformation of Eq. (1),
a velocity-temperature (hence viscosity) relation such as
Walz’s equation [14], and the MVP of the ITBL [14].
Validation of the new proposals in other flows, at higher
Re andM, with a pressure gradient, and for a nonadiabatic
wall, needs further study. This is hopeful since our pre-
liminary investigation indicates that the concepts of both

multilayer structure and order function are valid in general
in the presence of these mentioned complexities.
In summary, the M effect in the CTBL should be dis-

cussed with an appropriately defined Re�vw
. The �vw best

presents theM-invariantmultilayer structure of CTBLs.We
bolster Morkovin’s hypothesis by deriving a series of new
M-invariant scalings. TheM-invariant mixing length leads
to a viscosity weighted transformation for mapping the
MVP of the CTBL with negligible M effect throughout
the boundary layer. We hope these findings will improve
the validation of turbulence theories and computations
of the CTBL, provide more insights into the interactions
between the velocity and thermal fields, and finally, promise
accurate prediction of the mean profiles of the CTBL.
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FIG. 4 (color online). MVPs of the CTBL transformed by the
refined viscosity weighted transformation (solid lines) compared
to the untransformed MVPs (short-dashed lines) and the empiri-
cal MVP of the ITBL [14] (long-dashed dark yellow line) at
Re�vw

¼ 550. The insets are the enlargement in the wake region.

VDT is shown in the lower right inset, and the refined viscosity
weighted transformation is shown in the upper left. The arrows
indicate thatM increases from 2.25 to 4.5 and to 6. See Fig. 3 for
the color legend.
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