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We study the peculiar wrinkling pattern of an elastic plate stamped into a spherical mold. We show that

the wavelength of the wrinkles decreases with their amplitude, but reaches a minimum when the amplitude

is of the order of the thickness of the plate. The force required for compressing the wrinkled plate presents

a maximum independent of the thickness. A model is derived and verified experimentally for a simple

one-dimensional case. This model is extended to the initial situation through an effective Young modulus

representing the mechanical behavior of the wrinkled state. The theoretical predictions are shown to be in

good agreement with the experiments. This approach provides a complement to the ‘‘tension field theory’’

developed for wrinkles with unconstrained amplitude.
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Wrinkling patterns are observed when thin plates are
put under compression, spanning scales from geological
patterns [1] to skin wrinkles resulting from aging processes
or scars [2,3] to cells locomotion generating strains on sub-
strates [4]. They have important applications in microengin-
eering such as the formation of controlled patterns [5], or the
estimation ofmechanical properties from the number and the
extent of thewrinkles [6–9].Whilemost studies have focused
on near threshold patterns, recent contributions have pushed
further the description of finely wrinkled plates, i.e., well
above the initial buckling threshold [10,11]. These studies
consider plates submitted to strong in-plane tension on the
boundaries, which prevents stress focusing commonly
observed in crumpled paper [12]. In these descriptions,
wrinkles are assumed to totally relax compressive stresses,
as in traditional tension field theory [13,14]. In addition, both
amplitude and wavelength of the wrinkles vanish with the
thickness of the plate. We propose to study a conceptually
different wrinkling regime where the boundaries are free
from tension but the amplitude of the wrinkles is highly
constrained. We focus on the simplest example, an elastic
plate compressed in a spherical mold with a confinement
defined by a gap � (Fig. 1). This stamping configuration is
common in industrial processes where metal plates are
plastically embossed, the mismatch in Gaussian curvature
generally leading to regular wrinkles [15–17]. In the elastic
case, crumpling singularities first appear as the mold is
progressively closed down [Fig. 1(c)] and evolve into a
pattern of apparently smooth radial wrinkles for high con-
finement [Figs. 1(d) and 1(e)].We show that constraining the
amplitude does not lead to the collapse of compressive stress.
Instead, the wrinkling pattern derives from a nontrivial bal-
ance between compression and bending stresses, with sur-
prising consequences: the wavelength of the wrinkles does
not vanish, and the constraining force reaches a maximum
independent of the thickness of the plate.

One-dimensional problem.—We start by considering the
simpler problem of a plate of length L, thickness h, and

unit width. In-plane displacements are imposed at both ends
uxð�L=2Þ ¼ ��=2 (Fig. 2). In addition, the out-of-plane
displacement of the plate is constrained to a maximal value
�. The amplitude A of the median plane of the plate thus
corresponds to A ¼ �� h. For large values of �, a single
wrinkle forms as the axial force exceeds Euler’s critical load
[18]. Within small slope approximation, the out-of-plane
deflection of a single wrinkle (Fig. 2) is taken as wðxÞ ¼
A=2½1þ cosð2�x=�Þ�, where � is the wavelength. The
associated bending energy thus reads as follows:
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with B ¼ Eh3=½12ð1� �2Þ� the bending modulus of the
plate (E and � are the material Young’s modulus and
Poisson’s ratio, respectively). We are here interested in the
nonclassical limit � ! h, where in-plane stress� and strain
� cannot be neglected. According to the in-plane equilib-
rium equation @x� ¼ 0, � and � are constant along the

plate, leading to �¼R�=2
��=2½@u=@xþð1=2Þð@w=@xÞ2�dx=�.

The corresponding stretching energy can be written as
follows:
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where �one corresponds to the in-plane displacement for a
wrinkle and S ¼ Eh=ð1� �2Þ is the stretching modulus of
the plate [19].
We consider a series of n successive sinusoidal wrinkles

along the length L of the plate. Such a model does not
reproduce the continuous evolution of the confined plate,
as flat parts are actually observed [20,21]. Nevertheless, it
describes exactly particular shapes taken by the plate all
along the stamping process. To simplify the description, we
thus propose to join these particular states continuously by
considering noninteger values of n. The global energy
corresponding to n successive wrinkles is obtained by
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using the conditions n� ¼ L and n�one ¼ � in Eqs. (1)
and (2):

Etot ¼
�
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��

L

�
2
�
L (3)

Minimizing the total energy for an imposed amplitude
with respect to the number of wrinkles leads to

n2 ¼ 12ð�=LÞL2

3�2A2 þ 8�2h2
(4)

Counterintuitively, the number of wrinkles tends toward

a finite value nmax ’ 0:39ðL=hÞ ffiffiffiffiffiffiffiffiffiffi
�=L

p
as the amplitude A

vanishes [22]. In order to validate this prediction, polypro-
pylene films (E ¼ 2200 MPa and � ¼ 0:4, Innovia Films)
of thicknesses h ranging from 15 �m to 250 �m are cut
in bands of length L ¼ 250 mm and width of 25 mm. The
strip is clamped on a rigid plate with an imposed displace-
ment �. The resulting blister is confined as illustrated in

Fig. 2. Note here that to avoid plastic events, all the experi-
ments are such that�=L � �Y , where �Y � 2% is the yield
point of the material. We observe that for large confine-
ment the number of wrinkles saturates to a maximum value
in good agreement with the theoretical power law (Fig. 3).
Nevertheless, the value of the prefactor is significantly
lower than predicted (0.2 instead of 0.39). We interpret
this discrepancy as a consequence of the discrete transition
between successive modes [20]. Indeed the buckling of n
wrinkles can result into nþ 1 to 3n wrinkles (if all wrin-
kles split simultaneously), which leads to an ambiguity in
the actual mode number.
In addition to the number of wrinkles, the load (per unit

width) required for compressing the plate can finally be
derived by differentiating the elastic energy:

fx ¼ @Etot

@�
¼ ð�=LÞ

ð1þ 3�2=8ÞS; (5a)

fz ¼ @Etot

@A
¼ 24�ðL=hÞð�=LÞ2

9�4 þ 48�2 þ 64
S; (5b)

where � ¼ A=h is the relative amplitude. Within the limit
A � h, both forces are proportional to the bending stiff-
ness Eh3 (the plate can then be considered as inextensible)
and increase with the confinement. However the vertical
load vanishes for high compression (� � 1) after reaching
a maximum fz;max ’ 0:24ELð�=LÞ2 (with � ¼ 0:4) for

A=h ’ 0:94, while the axial force (per unit width) tends
toward ð�=LÞS. When A ¼ 0, we recover the simple case
of a flat plate under lateral compression where buckling is
inhibited, and fz vanishes. The experimental measurement
of the vertical force is delicate since any slight misalign-
ment generates an additional force during the compression.
Capturing the limit A ! 0 also requires an accurate posi-
tioning of the rigid dies. To limit artifacts due to misalign-
ment, the force due to the wrinkles fz is obtained by
subtracting the force given by the tensile machine for
�=L ¼ 0 (corresponding to a flat plate) to the one for
�=L � 0. As shown in the inset of Fig. 4, this difference
clearly indicates the presence of a maximum, as predicted
by our description. The precise localization of A ¼ 0 is still
difficult and is inferred from the position corresponding

FIG. 2. Experimental setup: a plate of length L, thickness h,
and unit width is subjected to symmetrical displacements at
the ends uxð�L=2Þ ¼ ��=2 and a maximal deflection �. We
consider that n similar wrinkles are formed (�one ¼ �=n) of
wavelength � ¼ L=n and amplitude A, with A ¼ �� h.

FIG. 1. Top: Experimental setup. A circular plate of radius R is
compressed between two rigid transparent hemispherical dies of
radius 	. The gap � between the spheres is imposed. Bottom:
Experimental observations of wrinkles formed when a plate is
compressed between two hemispherical dies. � is decreased
from (b) to (d), while R is maintained constant. (d) and (e)
are characterized by the same �, but different values for
R (	 ¼ 58 mm, h ¼ 58 �m, and R ¼ 12:5=25 mm).
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to the maximum force, fzðA=h ¼ 0:94Þ ¼ fz;max (Fig. 4).

We observe that for a fixed value of A, the axial force in
Eq. (5a) is proportional to the applied strain �=L, which
brings us to define an effective Young’s modulus:

fx
h

¼
�

Eeff

1� �2

�
�

L
) Eeff ¼ E

1þ 3
8 ðA=hÞ2

: (6)

This effective modulus increases from zero to E as the
plate is progressively confined.

Two-dimensional patterns.—We consider elastic discs
(same material) with radius R (from 10 mm to 70 mm)
and thickness h (from 30 �m to 250 �m) embossed
between hemispherical stamps of radius 	 (58 mm and
600 mm), separated by a distance � (Fig. 1). The compac-
tion force is measured as the difference of the raw force
with the force obtained without the plate (Fig. 5). The
orthoradial compression responsible for the formation of
wrinkles is a consequence of Gauss Theorema Egregium:
wrapping a sphere with a planar sheet implies stretching or
compression in addition to bending [23]. In terms of scal-
ing, the perfect contact between the plate and the stamp
involves a typical strain �� ðR=	Þ2 and a stretching
energy EhR6=	4 [24,25]. The ratio of the stretching energy
to the typical bending energy Eh3R2=	2 thus yields the
dimensionless parameter R=

ffiffiffiffiffiffi
	h

p
. Therefore forming wrin-

kles is not expected to release energy in the case R2 � 	h,
i.e., when the bending is dominant over stretching energy.
In the experiment, if R is small enough, the plate indeed
remains unwrinkled when the mold is closed.
We focus on the opposite limit R2 � 	h, especially for

� ’ h, where hierarchical wrinkles appear beyond a certain
distance from the center of the plate. The minute amplitude
of the wrinkles leads us to assume that the wrinkles only
involve smooth deformations as a perturbation from the
state � ¼ h, where the plate lays unwrinkled on the spheri-
cal cap. In other words, we conjecture [26] that the ob-
served transition in Figs. 1(c) and 1(d) corresponds to
stress defocusing similar to the transition described in
Ref. [27]. With this assumption, the scaling law for the
maximal number of wrinkles derived in the 1D situation
can be adapted to the circular plate. Since the effective
orthoradial strain is given by ðr=	Þ2, the number of wrin-
kles observed at the edge of the plate for high confinement

FIG. 3. Maximal number of wrinkles for polypropylene films
of thicknesses ranging from 15 �m to 250 �m. Open symbols,
1D experiments: strips of length 250 mm, width 25 mm with
�=L ¼ 0:2% and 0.3%. Filled symbols, 2D experiments: discs
of radius R ranging from 10 mm to 70 mm, radius of spheres
	 ¼ 58, 600 mm and nmax the number of wrinkles at the edge
of the discs. For a comparison with 1D experiments, we take
L ¼ 2�R and �=L ¼ R2=8	2 [24]. The solid line corresponds

to the best fit of the data: nmax ¼ 0:20ðL=hÞ ffiffiffiffiffiffiffiffiffiffi
�=L

p
.

FIG. 4. Evolution of the vertical force (per unit width) fz
required to confine the plate as a function of the dimensionless
amplitude A=h, defined as fzðA=h ¼ 0:94Þ ¼ fz;max. The solid

line corresponds to Eq. (5b), and the dashed line to the inex-
tensible approximation. Experiments with strips of length
250 mm, width 25 mm with �=L ¼ 0:07% (circles) and 0.2%
(squares). Inset: Raw force data for h ¼ 90 �m, solid line
corresponds to �=L ¼ 0, squares to �=L ¼ 0:2%.

FIG. 5. Evolution of the vertical force Fz1 required to confine
the plate as a function of the dimensionless amplitude A=h,
defined as Fz1ðA=h ¼ 1:14Þ ¼ Fz1;max. Experiments with discs

of radius 25 mm, thicknesses h ¼ 90 �m (squares), 150 �m
(circles), and 250 �m (triangles), with 	 ¼ 58 mm. The solid
line corresponds to the theoretical prediction. Inset: Raw force
data, the solid thin line corresponds to stamping without plate,
circles to h ¼ 150 �m.
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is expected to follow nmax � R2=	h. To compare quanti-
tatively 1D and 2D experimental results, we consider
that L ¼ 2�R and �=L ¼ R2=8	2, which corresponds
to the strain at the edge of a plate completely in contact
with the sphere. Figure 3 shows a good agreement between
the prediction for the wavelength and the experiments
(with the same prefactor as in 1D). Note that using
Eq. (4) near the middle of the plate where �

 ¼ 0 would
give n ¼ 0, which is not the case. The detailed description
of the wrinkling cascade cannot be captured by a simple 1D
model, and the transition between flat and wrinkled parts of
a plate has previously been shown to be problematic [10].
However, our scaling would predict a number of wrinkles
at the middle of the plate nmax=4. If the transition were
set by period doubling, this number would correspond
to three generations of wrinkles, which is qualitatively
observed (Fig. 1).

In order to describe the extension of the smooth region
and the stamping force, we consider a model plate with an
effective Young’s modulus Eeff in the orthoradial direction
and E in the radial direction. As a first approximation we
assume that wrinkles appear for �

 < 0. We thus consider
Eeff ¼ E for �

ðrÞ 	 0 when no wrinkles are formed and
Eeff ¼ E=½1þ 3

8 ðA=hÞ2� for �

ðrÞ< 0. The constitutive

law for this effective anisotropic material can be derived
from the initial Hooke’s law:

Eeff�

 ¼ �

; E�rr ¼ �rr; (7)

wherewe take for simplicity the Poisson ratio of the effective
plate equal to zero. The corresponding strains are given by
�rr ¼ @u=@rþ ð1=2Þð@w=@rÞ2 and �

¼u=r, withu andw
being the radial displacement and the deflection of the plate,
respectively. In addition, we assume the effective stress field
in the finely wrinkled region is axisymmetric �r
 ¼ 0 [10].
Within the limit of high compression (�� h),w is expected
to followwðrÞ¼�r2=2	. The different strains and the loca-
tion a of the transition between the smooth and the wrinkled
regions are finally derived by solving the equilibrium
equation @�rr=@rþ ð�rr � �

Þ=r ¼ 0 with the boundary
conditions uð0Þ ¼ 0, �rrðRÞ ¼ 0, �rrða�Þ ¼ �rrðaþÞ, and
�

ðaÞ ¼ 0. The analytic solution provides a description of
the confinedplate fromfinite to zero amplitude.Although the
radial stress is always tensile, the orthoradial stress is only
tensile in the central region of the sheet and progressively
becomes compressive toward the periphery where wrinkles
are observed (Fig. 1). In the case of high confinement, the

radius of the unwrinkled zone is a ¼ R=
ffiffiffi
3

p
, in qualitative

agreement with our experimental data.
In addition to the description of the compressed plate,

the combination of both 1D and 2D approaches also pro-
vides a simple estimate of the force required for stamping
the plate, which is relevant for practical applications.
Indeed, reducing the amplitude of the wrinkles requires a
force Fz1 that was derived for the 1D situation [Eq. (5b)].
By replacing L by R and �=L by (R2=	2), we thus expect

Fz1 / ER6=	4. More precisely, we compute this force as
Fz1 ¼

R
R
a fz2�rdr (with �=L ¼ �

 and L ¼ 2�r).

Moreover, curving the plate induces an additional pressure
P ¼ hð�rr þ �

Þ=	 and thus a curving force Fz2 �
EhR4=	3. However, in the relevant limit R2 � 	h, we
expect Fz2 � Fz1. Measuring the actual force is more
delicate than in the 1D experiment since obtaining a
reference force would require a sphere covered with a
spherical shell with the same material properties as the
compressed sheet [28].
Nevertheless, the evolution of the stamping force with the

dimensionless amplitude exhibits a fair agreement with the
prediction (Fig. 5). In addition,weverified that themaximum
of the force follows Fz1;max ¼ ½ð1:85� 0:05Þ10�3�ER6=	4.

The prefactor given by our model is 4
 10�3. The discrep-
ancy is however consistent with the difference between the
predicted and observed maximal number of wrinkles in 1D:
considering that the number of wrinkles is half that given
by Eq. (4), the estimate of the maximal vertical force fz
would indeed decrease by a factor close to 2.
To conclude, we have studied experimentally and

theoretically the packing of wrinkled thin plates constrained
in amplitude. We have broadened the one-dimensional
analysis [20] for vanishing amplitudes with two novel char-
acteristics: the number of wrinkles tends towards a finite
value, and the stamping force exhibits a maximum value.
We have finally shown how these results can be relevant in
2D geometry by using an effective plate that takes into
account the presence of wrinkles. The effective compressive
Young’s modulus of thewrinkled zonewhich depends on the
imposed wrinkle amplitude is analogous to the complete
collapse of compressive stress in plates with unconstrained
amplitude but under large tension. Our approach can be
applied to other stamping geometries, such as negative cur-
vature shapes where we expect different wrinkling patterns.
We thank Olivier Brouard for his help in designing the
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