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We present a microscopically based scheme for the generation of coherent cavity phonons (phonon

laser) by an optically driven semiconductor quantum dot coupled to a THz acoustic nanocavity. External

laser pump light on an anti-Stokes resonance creates an effective Lambda system within a two-level dot

that leads to coherent phonon statistics. We use an inductive equation of motion method to estimate a

realistic parameter range for an experimental realization of such phonon lasers. This scheme for the

creation of nonequilibrium phonons is robust with respect to radiative and phononic damping and only

requires optical Rabi frequencies of the order of the electron-phonon coupling strength.
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Phonon engineering involving acoustic nanocavities has
opened the possibility of controlling and studying phonon
statistics [1], with applications like phonon lasers [2,3],
using ion traps or coupled microcavities, phonon induced
electronic transitions [4], or the realization of mechanical
motion at the quantum limit in opto- [5] or nanoelectro-
mechanical [6,7] systems.

Phonon cavities are designed to confine single acoustic
cavity modes [8,9], and although there are several experi-
mental challenges in their realization (surface imperfec-
tions, anharmonic phonon decay, etc.), promising work on
high quality cavities with Q factors of Q ¼ 1000 has al-
ready been achieved by design for semiconductors [10,11].
The wide range of novel applications like light modulation
in the UVand THz range [12,13], carrier lifetime reduction
[14], and phonon laser action [2,3] by controlling the
phonon emission behavior of nanostructures has lead to
various proposals [15] for phononic devices.

In this Letter, we suggest the coherent optical control
[16] of a single cavity phonon mode coupled to a two-level
quantum dot (QD) to obtain coherent cavity phonon ex-
citations. The key idea is to drive the QD at the anti-Stokes
resonance and thus to generate a Raman transition, where a
dressed QD level emits phonons into the acoustic cavity.
Our scheme has similarities with models for photonic
lasing of single atoms [17,18] or circuit QED qubits [19],
but instead of incoherent pumping we use an effective
Lambda system and coherent light to induce phonon las-
ing. Our applied theoretical methods also allow us to scan
regimes with arbitrarily strong coupling parameters far
beyond the validity of a rotating wave approximation. We
mention that transport experiments in suspended QD struc-
tures have already demonstrated strong electron-phonon
coupling effects recently [20,21].

Model.—As a phonon source, we assume a two-level
QD coupled to a single nanocavity phonon mode; compare
with Fig. 1. The phonon emission (at a typical wave-
length of several nanometers) is controlled by an external

optical laser field, which drives the QD transition at
the anti-Stokes resonance (stimulated Raman process).
The Hamiltonian therefore describes a coherently driven
two-level system with two electronic states jvi and jci
coupled to a harmonic oscillator mode with coupling
strength g,

H ðtÞ ¼ @!cv

2
�z þ @!phb

ybþ�ðtÞ�x þ g�y�ðby þ bÞ;
(1)

where �z � jvihvj � jcihcj, �x � jvihcj þ jcihvj, ��
jvihcj, and bðyÞ are the phononic ladder operators [22].
The driving laser with frequency !l coherently pumps
our system via �ðtÞ ¼ �sin!lt and is detuned from the
QD resonance!cv by the acoustic cavity frequency!ph, so

that the QD is driven at the anti-Stokes position !l ¼
!cv þ!ph. This way, the driven two-level QD is operated

as a� system with the three dressed states jv; ni, jc; ni, and
jc; nþ 1i, where n denotes a phonon Fock state.
Method.—The master equation for the reduced system

density operator � belonging to Eq. (1) is given by

FIG. 1 (color online). Scheme of the QD interacting with an
external laser field (Rabi frequency �). The QD is assumed as a
two-level system with a valence band state jvi and a conduction
band state jci. The QD is coupled to a single THz acoustic
phonon mode, which is indicated by the multilayered structures.
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_�¼�i½H ðtÞ;��þ2�D½b��þ2�rD½���þ�pd

2
P ½�z��;

(2)

where the Lindblad dissipatorsD½x�� � x�xy � 1
2 fxyx; �g

and P ½x�� ¼ x�x� � describe intrinsic lifetime effects of
the cavity phonon mode b at the damping rate �, a radiative
damping of the two-level transition at the rate �r, and �pd as

a pure dephasing for a realistic treatment of the semicon-
ductor environment. All corresponding values are chosen
from experimental and theoretical data and refer to the low
temperature regime (T < 100 K); i.e., � and �pd remain

fixed, since the backaction of the electronic and phononic
system to a surrounding thermal heat bath can be neglected.
Instead of taking matrix elements of Eq. (1) and solving the
resulting large system of coupled equations directly, we
employ a numerically efficient inductive Heisenberg equa-
tion of motion approach for the phonon correlations of
necessary order hbynbni (n � 1), where the brackets denote
the trace with the density operator at time t [23]. This allows
us to calculate the time-dependent phonon number proba-
bilities PnðtÞ via a reverse recursion:

PnðtÞ ¼ 1

n!

�
hbynbni � XNend

j¼1

ðnþ jÞ!
j!

Pph
nþj

�
; (3)

where Nend is the truncation point of the sum (highest
included correlation degree). Nend has to be chosen accord-
ing to the initial conditions, parameters, and coupling
strengths until convergence is achieved.
Alternatively, it is possible to directly calculate the

phonon number probabilities Pn ¼ hjnihnji via the matrix
elements [24] to the phononic density matrix, and then
extract the phonon correlations. Here, we choose the equa-
tion of motion method for easier access to quantities like
the phonon number or phonon-phonon correlation func-
tion, and the possibility of a convenient generalization to
many-particle systems. Within our equation of motion
approach [23,25], which directly gives access to the pho-
non correlations hbynbni, we derive a set of equations for

the phonon-correlated electronic densities VðnjmÞ � jvi�
hvjbynbm, CðnjmÞ � jcihcjbynbm, and the polarization

PðnjmÞ � jvihcjbynbm, which for n;m � 0 fulfill the fol-
lowing equations of motion:

d

dt
hVðnjmÞi ¼ i½ðn�mÞ!ph � iðnþmÞ��hVðnjmÞi þ 2�rhCðnjmÞi þ i ~�ðtÞhPðnjmÞi � i½ ~�ðtÞhPðmjnÞi��; (4)

d

dt
hCðnjmÞi ¼ i½ðn�mÞ!ph�hCðnjmÞi � ½ðnþmÞ�þ 2�r�hCðnjmÞi � i ~�ðtÞhPðnjmÞi þ i½ ~�ðtÞhPðmjnÞi��

þ ð1� �nj0ÞnighCðn�1jmÞi � ð1� �mj0ÞmighCðnjm�1Þi; (5)

d

dt
hPðnjmÞi ¼ �i½!cv � ðn�mÞ!ph�hPðnjmÞi � ½ðnþmÞ�þ �p þ �r�hPðnjmÞi � i ~�ðtÞðhCðnjmÞi � hVðnjmÞiÞ

� ighPðnjmþ1Þi � ighPðnþ1jmÞi � ð1� �mj0ÞmighPðnjm�1Þi: (6)

As initial conditions, we assume factorizing thermal
phononic and electronic expectation values [26],

hVðn;nÞiðt ¼ 0Þ ¼ hVð0j0Þithhbynbnith; (7)

with the phonons in thermal equilibrium and the average
phonon number nph � hbybi ¼ ½expð�@!�Þ � 1��1 with
� ¼ ðkBTÞ�1, so that the initial phonon correlation of �nth
order hbypbpið0Þ is hbynbnið0Þ ¼ n!ðnphÞn. Furthermore,
hVð0j0Þith ¼ 1; i.e., the electron is initially in the electronic
ground state jvi. All other quantities are zero.

Results.—Figure 2(a) shows the temporal evolution
of the average phonon number �n � hbybi (solid curve)

and the phonon-phonon correlation function gð2Þph ð� ¼ 0Þ �
hbybybbi=hbybi2 (dashed curve). At very short times, i.e.,
on the scale of the switch-on time of the external pump
field (left panel), which is short compared to the time scale
given by the electron-phonon coupling and pump field Rabi

frequency, the phonons are strongly bunched (gð2Þph �2),

starting from a very low phonon number at the initial

temperature (T ¼ 4 K) and the thermal value gð2Þph ¼ 2.

During the switch-on period, the phonon system is pushed

out of the initial thermal equilibrium gð2Þph ð0Þ ¼ 2: due to the

small initial phonon number, the slightest fluctuation
induced by the laser switch-on immediately leads to a large
bunching effect. This is followed by a period of time

(t < 200 ps) with low �n and gð2Þph < 1 in the antibunching

regime: due to the continued excitation at the anti-Stokes
phonon resonance !cv þ!ph, the electronic population is

transferred from the ground to the excited state under
phonon emission into the cavity driven by the optically
(laser) induced Raman transition. This destroys the thermal
equilibrium and results in the generation of Fock state
phonon populations. In contrast to this, on a nanosecond
time scale [Fig. 2(b)], the phonon number increases and

the phonon statistics approach gð2Þph ¼ 1, i.e., the coherent

limit. This can be explained as follows: for increasing
time, in principle, the emitted Fock phonons can be reab-
sorbed (while the electron is again passing the virtual level
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jc; nþ 1i). However, eventually the electronic population

in the upper level (conduction band density Cð0j0Þ) decays
by radiative damping �r into the ground state and the
previously emitted phonons remain in the cavity; i.e., �n
increases. Furthermore, the radiative decay (constant �r)
introduces a random event in the course of time and the
repetition of this process leads to randomized phonon

statistics, i.e., a transition for a Fock field (gð2Þ < 1) to a

more random coherent phonon field with gð2Þph ð0Þ values

close to 1. The fact that gð2Þph ð0Þ converges to the value 1

from above reveals the truly Poissonian character [Fig. 2(b)
for long times], representing a coherent phonon state, in

contrast to a Fock statewith a high phonon number gð2Þph ð0Þ ¼
1� 1=hbybi, which is always less than one. We briefly note
that the calculated interaction processes are of higher order:
from inspection of Eq. (4), the phonon-assisted conduction

band density Cð1j0Þ can be created subsequently, and the
(laser) induced Raman process creates higher correlations
(n;m > 1). Similarly to the coherent phonon population, the

phonon-assisted polarizationsPð1j0Þ,Pð0j1Þ, and higher orders
in Eq. (6) are crucial for the dynamics.

For comparison, Fig. 2(a) also depicts the evolution of
the phonon number without phonon damping � ¼ 0.
In contrast to the case where the phonons are assumed to
have a finite lifetime � ¼ ��1 and the phonon number �n
saturates after several nanoseconds (solid line), Fig. 2(a)
reveals an exponential rise in slope (dotted line) for �n, if an
infinite phonon lifetime (� ! 0) is assumed. This kind of
increase of �n illustrates the characteristic behavior [27] of
the intensity caused by stimulated emission, which leads to
coherent laser action. To illustrate the temporal evolution
of the phonon statistics, the phonon probability distribution
PnðtÞ belonging to Fig. 2(a) is shown in Fig. 2(b). At the
beginning, the distribution shows thermal Bose-Einstein
statistics, with low initial phonon numbers due to the
low initial temperature T ¼ 4 K. After switching on the
laser, with increasing time the phonon probabilities evolve
dynamically into stationary, Poissonian nonequilibrium

statistics. The phonon system then shows the same statis-
tics as photons in a laser. Snapshots of Pn at t ¼ 0 and
t ¼ 10 ns are shown in Fig. 3. The good agreement of the
phonon distribution with a real Poissonian distribution is
also reflected in the values of the higher order correlation

functions gðnÞð0Þ with n > 2. Due to the very small frac-
tion of thermal phonons, their deviation from the coherent

value 1 is slightly larger than for gð2Þph ð0Þ, but less than 5%.

This results from a small broadening of the probability
distribution in comparison to an exact Poissonian distribu-
tion due to a small number of thermal phonons.
Parameter dependence of coherent phonon regime.—

Clearly, our system allows for phonon laser action charac-

terized by gð2Þph ¼ 1, which, however, requires a careful and

optimal tuning of parameters. For instance, due to the finite
phonon cavity lifetime �, there is a limit to the phonon
number �n; in the present case, the phonon number proba-
bilitieswith the probabilityP5 for finding five phonons have
the highest value [see Fig. 2; cf. the snapshot in Fig. 3(b)]. In
order to study the dependence of our system on parameters
like the excitation strength �, the phonon lifetime �, and
the radiative loss �r without making any further approxi-
mations, the set of Eqs. (4)–(6) is solved numerically in the
stationary limit by setting all time derivatives to zero. The
results are shown in Fig. 4.
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FIG. 3 (color online). Snapshots of the phonon number prob-
abilities Pn (a) before the optical excitation and (b) in the
stationary limit of 1.5 meV.

FIG. 2 (color online). (a) Temporal evolution �n (solid line) and gð2Þph ð0Þ (dashed line). (b) Temporal evolution of Pn for stationary
excitation. Parameters: Rabi frequency� ¼ 1:5 meV, QD-phonon coupling jgj ¼ 0:3 meV [33,34], QD level splitting !cv ¼ 1:5 eV,
phonon lifetime ��1 � 2 ns [35], QD relaxation rate ��1

r � 200 ps [36], QD pure dephasing rate ��1
pd � 10 ps [36], and initial

temperature T ¼ 4 K.
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In Fig. 4(a) (top), �n and gð2Þph are plotted versus rising

optical excitation strengths�, keeping �r as well as � fixed
at the values used in Fig. 2. Obviously, the system used does
not show a clear threshold at lower pump strengths. For the
parameter set used, the system stays in the few phonon limit
(here, n < 6). In this regime, the presence of spontaneous
emission leads to a continuous growth of the phonon
number and a smooth transition from thermal to coherent
phonon emission. The operational threshold of the device

can be identified by theMandel-Q parameterQ¼ �nðgð2Þph �1Þ
(gray curve), which reflects the deviation from coherent
statistics. In Fig. 4(a), three regions (A, B, C), with different
emission properties can be identified: in region A, the
phonon number and the Mandel-Q parameter are simulta-
neously increasing. The device is operating in the classical
nonlasing regime. At the beginning of region B,Q has a first
maximum (threshold), after which the phonon number is
increasing, whileQ decreases to a minimum. This simulta-
neous behavior of �n and Q indicates the coherent laser
regime. The dotted curve [inset to Fig. 4(a) (bottom)] shows
the first maximum of Q [threshold: �T :¼ �ðQmaxÞ], re-
vealing a nonlinear dependence on �. Note that there is
phonon amplification only during the increase of�T . In the
regime of � where �T has a negative slope, only low

phonon numbers are generated with gð2Þph < 1 and Q< 0.

Here, the comparably small phonon population, generated
via the induced Raman process, is in the Fock state; i.e., the
phonon statistics are antibunched. Further, Fig. 4(a) reveals
in region C that there is only a limited � interval (self-
quenching), similar to single atom lasers [17,28–31], where

coherent phonon populations (gð2Þph ¼ 1) can be established.

This can be explained as follows: for pumping strengths
�< 0:01 meV, the initial thermal phononic distribution
is barely changed. Only very small phonon numbers are

achieved, with gð2Þph values well in the bunching regime.

However, if the Rabi energy � reaches values of the order
of the electron-phonon coupling strength g, much higher
phonon populations �n are generated. In this regime, the
external laser pump induced Raman emission process,
with the electron passing the virtual intermediate phonon-

assisted energy state jc; nþ 1i, is dominant, and gð2Þph re-

mains close to its coherent value of 1. On the other hand, for
Rabi energies � � @!ph, the induced phonon emission

process is disabled by the high external laser strength,
making coherent phonon emission ineffective, and the pho-

non system undergoes a strong heating. The gð2Þph function

then saturates at the value for pure thermal statistics of 2.
In this case, the external pump laser is then so strong that the
electronic densities are driven by the laser field also reso-
nantly, although the frequency is detunedwith respect to the
electronic transition jvi ! jci. This is also reflected in the

behavior of the microscopic polarization jPð0j0Þj [dash-
dotted curve, inset to Fig. 4(a) (top)], which, similar to the
Mandel-Q parameter, shows a minimum during the coher-
ent phonon emission. Phonon-assisted transitions via the
virtual intermediate states (Fig. 1) are then of minor impor-
tance. Since the generation of a phonon population is then

FIG. 4 (color online). (a) Top: �n (black solid curve) and gð2Þph ð0Þ (dashed curve) over varying laser strength. Excitation dependence of
the polarization Pð0j0Þ (inset: dash-dotted curve). Bottom: evolution of Q (gray solid curve) and the first threshold pump power
�ðQmaxÞ (inset: dotted curve) in area A (dark shaded area) over varying phonon damping �. (b) Pn over varying laser strength in the
stationary regime.
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FIG. 5 (color online). Pn at three different excitation strengths:
� ¼ (a) 0.006 meV, (b) 1.5 meV, and (c) 6 meV.
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governed mostly by spontaneous phonon emission, the
resulting statistics are thermal.

In order to corroborate this excitation-dependent phonon
emission behavior, we plot the phonon probability distri-
butions in Figs. 4(b) and 5. The phonon field is bunched for
lower excitation strengths � ¼ 0:06 meV and very high
excitation strengths� ¼ 6:0 meV. Only in between, when
� is in the range of g, does the probability distribution Pn

show Poissonian phonon statistics [32].
To conclude, we have presented a microscopic equation

description of light induced phonon emission from a semi-
conductor QD coupled to an acoustic THz nanocavity. We
found a limited parameter range for the generation of a
coherent phonon distribution; in particular, the Rabi fre-
quency � must be the same order as the electron-phonon
coupling strength g. The presence of a nonphonon related
(radiative) decay channel for the electronic densities is
crucial for the realization of coherent phonon statistics.
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