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We analyze the stability and dynamics of an ion chain confined inside a high-finesse optical resonator.

When the dipolar transition of the ions strongly couples to one cavity mode, the mechanical effects of light

modify the chain properties close to a structural transition. We focus on the linear chain close to the zigzag

instability and show that linear and zigzag arrays are bistable for certain strengths of the laser pumping the

cavity. For these regimes the chain is cooled into one of the configurations by cavity-enhanced photon

scattering. The excitations of these structures mix photonic and vibrational fluctuations, which can be

entangled at steady state. These features are signaled by Fano-like resonances in the spectrum of light at

the cavity output.
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Crystals of singly charged ions in traps are remarkable
realizations of the phenomenon first predicted by Wigner
[1]. The level of control experimentally achieved on these
systems is impressive even at the quantum level and makes
them promising candidates for several applications ranging
from metrology to quantum information processing [2–4].
Their versatility also offers the possibility to study
paradigmatic models of strongly correlated many-body
systems [4–9].

Structural transitions in ion crystals have recently
attracted renewed interest [10–14]. They are due to the
interplay between the repulsive Coulomb interaction and
the confining potential of Paul or Penning traps and can be
controlled by varying, for instance, the aspect ratio of the
trap potential. A prominent example is the linear-zigzag
transition that is classically described by the Landau model
[10], while its quantum analogue belongs to the universal-
ity class of a one-dimensional ferromagnet [13]. Studies of
quenches across the instability in the classical regime
showed that formation of defects follows the predictions
of the Kibble-Zurek mechanism [15,16].

The combination of ion and dipolar traps [17,18] opens
further perspectives, such as the possibility of realizing the
Frenkel-Kontorova model [19,20] and of coupling ultra-
cold atomic systems with ions [21,22]. In Refs. [17,18] the
dipolar potential is classical, the quantum fluctuations of
the electromagnetic field being very small. Avery different
scenario can be reached in the presence of a cavity.
Experiments with trapped ions in front of a mirror showed
a mirror-mediated dipole-dipole interaction [23] and dem-
onstrated the mechanical effect of the vacuum state of the
electromagnetic field on a single ion [24]. The recent
achievement of strong coupling between the optical tran-
sitions of ions forming a Wigner crystal and one mode of a
high-finesse resonator [25,26] sets the stage for the obser-
vation of novel self-organized structures. In this regime,
mechanical forces due to multiple scattering of a cavity
photon can be infinitely long ranged and may modify the

structural stability even at the single photon level. The
understanding of such dynamics can allow one to identify
new control tools as well as to access new strongly corre-
lated states. The competition of long-range potentials of
different natures, however, gives rise to a theoretical prob-
lem of considerable complexity.
In this Letter we theoretically characterize structural

properties of crystalline structures inside a standing-wave
resonator, analyzing in particular how the crystal structure
close to the linear-zigzag instability is modified in this
environment. Figure 1 displays the main features of the
system. A string of N ions of mass m and charge q is
confined within an optical resonator by a radio frequency
trap, here described by a harmonic potential with axial and
transverse frequencies!a and!t, respectively. The dipolar
transition of the ions interacts with a mode of the cavity
field which is pumped by a laser with strength �. When
the cavity and pump are sufficiently out of resonance from
the atomic dipole transition, the dynamical variables of the
ions and the cavity field are described by the operators ~rj
and ~pj, denoting the position and momentum of the center

FIG. 1 (color online). The dipolar transitions of ions forming a
chain couple with one mode of a high-finesse optical cavity. The
depth of the optical potential inside the resonator depends on the
ions’ transverse positions and on the strength of the laser
pumping the cavity. This property gives rise to hysteresis in
the structural configuration and to quantum correlations between
photonic and mechanical fluctuations. The scheme can be im-
plemented in a setup like the one realized in Ref. [33,34].
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of mass of the jth ion in the array, and by the annihilation
and creation operators a and ay of a cavity photon at
frequency !c. Their coherent dynamics are governed by
the Hamiltonian H ¼ Hcav þHions þHint. Here, Hcav ¼
�@�ca

ya� i@�ða� ayÞ is the Hamiltonian for the cavity
mode in the absence of atoms and in the reference frame
rotating at the pump frequency !p with �c ¼ !p �!c;

the Hamiltonian for the ions is given by

Hions ¼
XN
j¼1

� ~pj
2

2m
þVtrapð~rjÞþ

XN
k¼jþ1

VCoulðj~rj� ~rkjÞ
�
; (1)

and includes the kinetic energy, the trap potential Vtrap,

and the Coulomb repulsion VCoul. Finally, Hint ¼
@ayaU0ð ~r1; . . . ; ~rNÞ describes the interaction between the
ions and the cavity field, with

U0ð~r1; . . . ; ~rNÞ ¼ g20
�0

XN
j¼1

cos2ðkxjÞe�y2j =�
2

: (2)

Here, g0 is the strength of the coupling between the cavity
and the ions’ transition at frequency !0, k is the cavity
wave vector, �0 ¼ !p �!0 is the detuning of the pump

from the dipolar transition, and � denotes the width of the
cavity mode, which is generally smaller than the chain
length: the number of ions coupling to the cavity mode,
and hence contributing to U0, is Neff , with Neff <N. The
frequency U0 weighs the nonlinear coupling between the
motion and the cavity mode: it is the shift of the cavity
frequency due to the ions inside the resonator, and con-
versely it is the mechanical potential exerted on these ions
by a single cavity photon [27]. This term gives rise to
mechanical effects that, for strong coupling, can be signifi-
cant at the single-photon level. Incoherent effects arise
from the spontaneous decay of the dipolar transition at
rate �, the cavity decay at rate 2�, and the thermalization
of the ions’ motion with an external reservoir which may
be due to patch potentials at the trap electrodes [2,28]. We
choose the detuning j�0j to be the largest parameter,

corresponding to the inequality j�0j � �, �, j�cj, g0
ffiffiffi
�n

p
,

with �n the mean intracavity photon number. In this regime
the cavity-ion interaction is mainly dispersive and sponta-
neous emission can be neglected [29].

The HamiltonianH formally agrees with the one derived
for neutral atoms [27,30]. However, while in Refs. [27,30]
the atomic interaction is a contact potential, here the ions
repel via the long-range Coulomb repulsion. Therefore, in
the first case the strength of the pump determines the
quantum phase of the atoms in a nontrivial way [31].
For ions, on the other hand, quantum degeneracy is irrele-
vant but the strength of the cavity potential can substan-
tially modify the crystalline structure. An effective
dispersive potential for the particles can be derived when
retardation effects can be discarded. In this limit the cavity
field is determined by the instantaneous set of positions
of all ions coupled with the cavity mode and reads

�a ¼ �=ð�� i�effÞ, with �eff ¼ �c �U0, while the cor-
responding effective potential takes the form

Veff ¼ ð@�2=�Þ arctanð��eff=�Þ: (3)

This potential gives rise to an effective long-range force
between the ions whose strength scales with the coopera-
tivity C ¼ g20Neff=ð�j�0jÞ. The ions’ structure is then de-

termined by the positions at which the total potential
Vtot ¼ Vtrap þ VCoul þ Veff exhibits minima.

Two situations can be identified depending on the value
of the cooperativity C. For C � 1, the potential in Eq. (3)
approaches a classical potential whose depth is indepen-
dent of the ions’ positions. In this limit, when the ion string
is parallel to the cavity axis (which corresponds to setting
all values yj ¼ 0), the system provides a realization of the

Frenkel-Kontorova model with trapped ions [19]. When
the string is instead orthogonal to the cavity-mode wave
vector, as in Fig. 1, the optical potential generates a trans-
verse force. This force is symmetric about the chain axis
when the chain is at a node or antinode of the cavity
standing wave. Then, close to the linear-zigzag mechanical
instability the optical potential shifts the critical value of
the transverse trap frequency with respect to the free-space
value !tc [32]. In the following we shall assume that the
equilibrium positions of the ions in the linear array are
located at an antinode of the cavity standing wave. This can
be realized, for instance, with the setups of Refs. [33,34].
For blue-detuned pumps, with �0 > 0, the antinode is a
maximum of the cavity potential and a mechanical insta-
bility thus appears at frequencies larger than !tc, while a
red-detuned pump field will have the opposite effect [35].
This behavior is significantly modified at large coopera-
tivities, C * 1, where the cavity-mediated interaction be-
tween the ions becomes relevant. We consider �c ¼ 0,
�0 > 0: in this case the intracavity field is minimum
when the ions form a linear array, while it increases
when their equilibrium positions arrange in a zigzag.
This property can give rise to bistability of the linear and
zigzag structures which can be observed in the mean value
of the intensity Iout of the field at the cavity output. An
example of this behavior is shown in Fig. 2(a) where Iout is
plotted as a function of the pump intensity �2 for a chain of
60 ions in a harmonic trap, assuming that the central region
of the chain couples to the cavity mode and Neff � 5:7.
Further insight is gained by analyzing the effective

potential Vs of the zigzag mode which is the soft mode
of the linear-zigzag transition in free space [10]. We first
consider the simplest limit when the ions can be assumed
to be equidistant (which describes the chain central region
or a chain in an anharmonic axial trap [36]) and the mode

amplitude reads xs ¼ P
jð�1Þjxj=

ffiffiffiffi
N

p
. Denoting by !s ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2
t �!2

tc

p
the frequency of the soft mode above the

critical point in free space, the potential Vs when the
ions are uniformly illuminated by the cavity field and for
!t > !tc reads

PRL 109, 053003 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

3 AUGUST 2012

053003-2



Vs ¼ m

2
!2

sx
2
s þ @�2

�
arctan

�
C cos2

�
kxsffiffiffiffi
N

p
��

: (4)

The second term on the right-hand side of Eq. (4) describes
the effect of the optical field. For � ¼ 0 the cavity mode is
in the vacuum state and the linear array is stable. The soft
mode becomes unstable when the optical power is in-
creased above the threshold value �2

th ¼ Nð1þ C2Þ=
ð4CÞ!2

s�=!R, with !R ¼ @k2=ð2mÞ the recoil frequency.
For C> 1, parameters can be found in which both linear
and zigzag configurations are stable. In a finite chain the
amplitude of the soft mode and the coupling of the ions to
the cavity are not uniform along the chain. However, the
potential energy as a function of the soft-mode amplitude
gives similar qualitative results, as shown in Fig. 2(b).
Here, for certain values of � the potential can exhibit three
minima, corresponding to stable linear and zigzag arrays.
We remark that the observed bistability is a consequence of
the nonlinear dependence of the optical forces on the
positions of the atoms within the standing-wave field. In
the thermodynamic limit, if the region of the chain inter-
acting with the cavity mode is finite, the effect of this
coupling is a localized defect in the chain. For a finite
system, nevertheless, forces acting on few ions can
generate arrays close to zigzag configurations due to the
long-range Coulomb repulsion [37,38].

The three metastable configurations can be observed
when �c ¼ 0, �0 � � as the result of a cooling process
due the strong coupling with the cavity [39]. In this regime
the excitations of the emergent crystalline structure reach a

stationary state mixing photonic and vibrational modes.
We analyze their behavior by considering the coupled
dynamics of the quantum fluctuations of the field and
motion. Let �a ¼ a� �a be the quantum fluctuations of
the field about the mean value �a, and f�xj; �yjg the dis-

placement of the ion localized at the equilibrium position

~rð0Þj determined by the balance of harmonic, Coulomb, and

mean optical forces. For convenience we introduce the
normal modes of the crystal that characterize the dynamics
of the ions when the coupling with the quantum fluctua-

tions of the cavity field can be neglected. Let ��j ¼P
nM

ð�Þ
jn Bn0ðbn þ byn Þ with � ¼ x, y, and bn (byn ) the bo-

sonic operator annihilating (creating) a phonon of the

normal mode at frequency !n, Bn0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ð2m!nÞ

p
, and

Mð�Þ
jn the element of the orthogonal matrix relating the local

coordinates with the normal modes. The dynamics of
normal modes and field fluctuations are governed by the
Heisenberg-Langevin equations [40,41]:

� _a ¼ ði�eff � �Þ�a� i
X
n

cn �aðbn þ byn Þ þ
ffiffiffiffiffiffi
2�

p
ain; (5)

_b n ¼ �ði!n þ �nÞbn � icnð �a��aþ �a�ayÞ þ ffiffiffiffiffiffiffiffi
2�n

p
bin;n;

(6)

which include quantum noise on the cavity at rate � with
corresponding input noise ain, and on the motion at rate �n

with input noise bin;n, simulating the presence of a reser-

voir with which the ions’ vibrations couple, such that

hbyin;nðtÞbin;mðt0Þi ¼ Nn�n;m�ðt� t0Þ [42], with Nn the

mean phonon number at the temperature of the reservoir.
The vibrations and field fluctuations couple with strength
cn �a, where

cn ¼ Bn0

�0

X
j

½MðxÞ
jn @xjg

2
j þMðyÞ

jn @yjg
2
j � (7)

and gj ¼ g0 cosðkxjÞe�y2j =ð2�2Þ. The coefficients cn vanish

when all equilibrium positions are at field nodes, where
gj ¼ 0. If the particles are located at antinodes, the cou-

pling is determined by the derivatives in the y direction
which are assumed to be much smaller than those along x
(k� � 1). Thus, for the chosen setup the coupling between
vibrations and field fluctuations is stronger in the zigzag
configuration, while it is a very small perturbation when
the ions form a linear chain. Recall that for the parameters
considered the cavity field cools the normal modes coupled
to it, so that cavity and crystal reach a stationary state [39].
We study the effect of this coupling in the spectrum at

the cavity output, Sð�Þ ¼ haoutð�Þyaoutð�Þi=I0, with
I0 ¼ 2�j �aj2 the zero-order intensity of the output field

and aout ¼ ain þ
ffiffiffiffiffiffi
2�

p
a [40]. The steady-state spectrum

exhibits negligible fluctuations in the linear phase, while
in the zigzag configuration it reads

FIG. 2 (color online). (a) Intensity Iout at the cavity output for
varying pump strength P ¼ ð�=�0Þ2, with �2

0 ¼ �!2
a=ð2!RÞ.

Iout is in units of I1 ¼ IoutðP ¼ 1Þ and is obtained for a configu-
ration minimizing Vtot, numerically found using linear and
zigzag chains as initial guesses. (b) Potential Vs as a function
of the displacement x of the central ion (in units of 1=k) for
P ¼ 130, 160, 190. The dashed lines indicate nodes at kx ¼
��=2. The plots correspond to a chain of 60 40Caþ ions with
interparticle distance 4:3 	m in the central region, coupled to a
cavity mode with wavelength 866 nm and transverse width
� ¼ 14 	m (Neff ’ 5:7). The other parameters are !a=2� ¼
0:1 MHz, !t=2� ¼ 2:26 MHz (the critical value is !tc=2� ’
2:216 MHz), �c ¼ 0, �0=2� ¼ 500 MHz, �=2� ¼ 0:5 MHz,
g0=2� ¼ 9:4 MHz, �=2� ¼ 10 MHz, resulting in C ¼ 2.
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Sð�Þ¼S0ð�Þ
�
4�j
ð�Þj2j �aj2
�2þð���effÞ2

þX
n

c2n2�n

�
Nn

�2
nþð!n��Þ2

þ Nnþ1

�2
nþð!nþ�Þ2

��
(8)

where the first term is the contribution due to the coupling
of the quantum vacuum with the crystal vibrations, with

ð�Þ ¼ P

nc
2
n!n=½!2

n þ ð�n � i�Þ2�, and the second is due
to thermal noise coupling to the modes. The common
prefactor takes the form

S0ð�Þ ¼ 2

�2 þ ð�þ�effÞ2
��������1þ

4�eff
ð�Þj �aj2
ð�� i�Þ2 þ�2

eff

��������
�2

(9)

and gives a Lorentz curve when C � 1. Its functional
behavior is strongly modified when the cooperativity is
increased: then, motional and quantum noise do not simply
add up, but nonlinearly mix to determine the spectral
properties of the output field.

Figure 3 displays the spectra for a chain of three ions for
different parameter choices: as C is increased the spectral
lines change the relative heights, width, and shape. We first
note the asymmetry in the spectra with respect to � ¼ 0:
this is due to the (weak) coupling of the ions’ motion to the
thermal bath [43]. The broadening at large cooperativity is
a consequence of the vacuum input noise on the cavity field
and indicates the rate at which the cavity cools the corre-
sponding vibrational mode [44]. It is accompanied by the
appearance of Fano-like resonances which result from
the dispersive effect of the cavity backaction and are a
signature of quantum interference in the fluctuations of
the motion and field [45]. This interference is due to
quantum correlations established by the dynamics
described in Eqs. (5) and (6), which can generate entangle-
ment between vibrational and photonic modes [46]. In

fact, for the parameters of Fig. 3(b) we find in the steady
state a logarithmic negativity of 0.15 [47] between the
cavity and phononic excitations. We remark that the field
at the cavity output allows one to monitor the stationary
state in a nondestructive way; it can be measured in
existing experimental setups [48] and could be used to
realize feedback on the ion crystal, for instance, by means
of an appropriate generalization of the procedure in
Ref. [49].
In summary, the structural properties and quantum

fluctuations of an ion Coulomb crystal inside a resonator
are strongly affected by the nonlinearity of the cavity
coupling. This effect is particularly visible close to struc-
tural instabilities. We have focused on the linear chain
close to the zigzag instability and have shown that for
large cooperativity also the zigzag array can be made
stable by the photon-mediated interaction between the
ions (when a small region of the chain is coupled to the
cavity, this coupling induces a localized defect in the chain
with a zigzag form). This behavior can be detected by
hysteretical behavior of the intensity of the field at the
cavity output as a function of the pump strength. The
excitations of these structures reach a stationary state
where phonons and photons are strongly correlated and
can exhibit entanglement. At even larger cooperativity the
dynamics studied in this work could be induced by
one photon inside the resonator, thereby providing an
unprecedented control of many-body systems at the
single-photon level.
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help with numerical calculations. This work was partially
supported by the European Commission (STREP PICC,
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Alexander von Humboldt, and the German Research
Foundations.

FIG. 3 (color online). Spectrum Sð�Þ of the field at the cavity output (in units of S0 ¼ 1=!a) for a zigzag chain of three ions when
only one ion at the chain edge, the right one in (c), couples significantly to the cavity mode (with Lamb-Dicke parameter �0:1) and
the ions’ motion is cooled by the cavity field. The parameters are the same as in Fig. 2, except for !a ¼ � ¼ 2�� 1 MHz,
!t ¼ 2�� 1:57 MHz, and (a) C ¼ 0:5, P ¼ 1; (b) C ¼ 3, P ¼ 0:22; the mode width � is 0.65 times the interparticle distance in the
linear array, so Neff ’ 1:1. The equilibrium positions are the same in (a) and (b). The motional modes contributing to the spectral peaks
are sketched in panel (c) (not to scale; the resonance corresponding to mode 2 is not visible because this mode is too weakly coupled to
the cavity). The Rayleigh peak is not shown.
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