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We study the use of truncated normal-ordered three-nucleon interactions in nuclear structure

calculations starting from chiral two- plus three-nucleon Hamiltonians evolved consistently with the

similarity renormalization group. We present three key developments: (i) a rigorous benchmark of the

normal-ordering approximation in the importance-truncated no-core shell model for 4He, 16O, and 40Ca;

(ii) a direct comparison of the importance-truncated no-core shell model results with coupled-cluster

calculations at the singles and doubles level for 16O; and (iii) first applications of similarity renormal-

ization group-evolved chiral NN þ 3N Hamiltonians in coupled-cluster calculations for medium-mass

nuclei 16;24O and 40;48Ca. We show that the normal-ordered two-body approximation works very well

beyond the lightest isotopes and opens a path for studies of medium-mass and heavy nuclei with chiral

two- plus three-nucleon interactions. At the same time we highlight the predictive power of chiral

Hamiltonians.
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Two decades of experiencewith ab initio nuclear structure
calculations, including the pioneering work with the Green’s
Function Monte Carlo approach [1], have shown that three-
nucleon (3N) interactions play an important role for under-
standing the structure of nuclei systematically from first
principles. Recent advances on nuclear interactions derived
within chiral effective field theory (EFT) put additional
emphasis on the consistent inclusion of realistic 3N inter-
actions in nuclear structure calculations [2–6]. However,
for most large-scale many-body approaches, such as the
no-core shell model (NCSM) [7] or the coupled-cluster
(CC) method [8], the full inclusion of 3N interactions
increases the computational cost by orders of magnitude
and often renders calculations impossible that are routinely
performed with two-nucleon (NN) Hamiltonians. In order to
resolve this dilemma—the need for 3N interactions versus
the tremendous computational cost—one might resort to
approximate schemes for including the 3N interaction, par-
ticularly when aiming at a controlled approximation rather
than an exact solution of the many-body problem. Density-
dependent NN interactions are being used, e.g., in nuclear
matter calculations to simulate the effects of 3N interactions
in a computationally simple approximation (for recent appli-
cations see Refs. [9–11]). In the context of the nuclear shell
model, effects of 3N forces have been included through
an effective monopole interaction constructed via normal
ordering with respect to the core [12]. In a general context,
normal ordering with a nucleus-specific reference state can
be used to construct a systematic and improvable lower-rank
approximation of the 3N interaction for use in a range of
different many-body approaches.

In this Letter we present rigorous benchmarks and sys-
tematic applications of the normal-ordering approximation
for chiral 3N interactions. We use the importance-truncated

no-core shell model (IT-NCSM) [13,14] for the solution of
the many-body problem for 4He, 16O, and 40Ca and compare
ground-state energies and expectation values obtained with
the full and the truncated normal-ordered 3N interaction.
We then apply the normal-ordered 3N interaction in CC
calculations for the ground states of medium-mass nuclei up
to 48Ca and discuss the implications for nuclear structure
predictions with chiral NN þ 3N Hamiltonians.
Normal-ordering approximation.—Transforming the

many-body Hamiltonian into a normal-ordered form with
respect to a nontrivial vacuum state is a standard technique
in quantum many-body physics. Using creation and anni-

hilation operators ay� and a� for a single-particle basis j�i
defined with respect to a trivial zero-body vacuum state,
the operator of a 3N interaction formally reads

V3N ¼ 1

36

X

�1�2�3
�1�2�3

V�1�2�3
�1�2�3

A�1�2�3
�1�2�3

; (1)

where V�1�2�3
�1�2�3

¼ h�1�2�3jV3Nj�1�2�3i are antisym-

metrized matrix elements, and the operator A�1�2...
�1�2... ¼

ay�1
ay�2

� � � a�2
a�1

is a shorthand for a normal-ordered

product of creation and annihilation operators with respect
to the trivial vacuum (vacuum normal-ordering).
Instead of the trivial vacuum, we can choose a reference

state j�refi being a Slater-determinant of A single-particle
states and reinterpret the creation and annihilation opera-
tors as particle or hole creation and annihilation operators
with respect to this new vacuum. We have to rearrange the
creation and annihilation operators in the particle-hole
picture to establish normal-ordering with respect to j�refi
(reference normal-ordering). Using Wick’s theorem and
~A�1�2...
�1�2... as a shorthand for the reference normal-ordered

product, we obtain for the 3N interaction
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with matrix elements W ¼ 1
6

P
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2
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for the residual three-
body (3B) term, where �i labels the occupied single-
particle states in j�refi. The interesting aspect of the ref-
erence state as compared to the trivial vacuum is that it
contains information about the specific many-body system
under consideration—the reference state provides a first
approximation to, e.g., the ground state of a closed-shell
nucleus. Based on this information, contributions of the 3N
interaction are demoted to lower-particle ranks. This is the
basis of the normal-ordered n-body (NOnB) approximation.

Benchmark of the normal-ordering approximation.—To
quantify how well such a truncation works, we perform
calculations for the ground states of closed-shell nuclei in
the IT-NCSM. The IT-NCSM allows us to include the exact
3N interaction just as well as any NOnB approximation.
The underlying Hamiltonian contains the chiral NN inter-
action at next-to-next-to-next-to-leading order (N3LO)
of Ref. [15] and the local chiral 3N interaction at next-
to-next-to-leading order (NNLO) of Ref. [16]. The low-
energy constants cD and cE are taken from a fit to the
ground-state energy and the �-decay half-life of A ¼ 3
systems [17]. This initial Hamiltonian is transformed
through a similarity renormalization group (SRG) evolu-
tion at the two- and three-body level to enhance the con-
vergence behavior of the many-body calculation [18–21].
The SRG evolution represents a continuous unitary trans-
formation parametrized by a flow-parameter�, with� ¼ 0
corresponding to the initial Hamiltonian. We will mainly
consider two types of SRG-evolved Hamiltonians: The
NN þ 3N-full Hamiltonian starts with the initial chiral
NN þ 3N Hamiltonian and retains all terms up to the
3N level in the SRG-evolution, the NN þ 3N-induced
Hamiltonian omits the chiral 3N interaction from the initial
Hamiltonian, but keeps all induced 3N terms throughout
the evolution. The 3N terms in both Hamiltonians have
quite different characteristics, which makes them useful
for benchmarking the normal-ordering approximation.
In addition we will employ a range of values of the flow
parameter � to generate an even larger set of test cases.

We start with a direct comparison of IT-NCSM calcula-
tions for the ground-state energies of 4He and 16O using
either the exact 3N interaction or the NO2B approximation.
The reference state is always the 0@� Slater-determinant
composed of harmonic-oscillator single-particle states. The
IT-NCSM energies as function of the model-space trunca-
tion parameterNmax are presented in Fig. 1.We can compare

the converged IT-NCSM ground-state energies for 4He
obtained with the exact NN þ 3N-induced and NN þ
3N-full Hamiltonians, �25:33ð2Þ and �28:46ð2Þ MeV,
respectively, with full NCSM calculations using the same
bare chiral Hamiltonians [17], yielding �25:39ð1Þ and
�28:50ð2Þ MeV, and with hyperspherical-harmonics calcu-
lations using the bare chiral NN interaction [22], yielding
�25:38 MeV.
The comparison of the converged values of the ground-

state energy obtained with the NO2B approximation and
with the exact 3N interaction reveals a multifaceted
picture. The largest relative deviation at the level of 2%
is observed for 4He with the NN þ 3N-induced interac-
tion. For both, the NN þ 3N-induced and the NN þ
3N-full Hamiltonians, the NO2B approximation leads to
an overbinding of up to 0.6 and 0.3 MeV, respectively. Note
that the systematics of the deviation as function of the flow
parameter � is opposite for both Hamiltonians. For 16O we
observe deviations below 1% for the ground-state energy,
again with a nontrivial dependence on the Hamiltonian.
For NN þ 3N-induced the NO2B approximation consis-
tently overestimates the binding energy by about 1 MeV,
for NN þ 3N-full the NO2B approximation overbinds
by less than 1 MeV for � ¼ 0:08 fm4 and underbinds by
less than 1 MeV for � ¼ 0:04 fm4. For 40Ca we have
performed IT-NCSM calculations up to Nmax ¼ 8 again
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FIG. 1 (color online). IT-NCSM ground-state energies for 4He
and 16O as a function of Nmax for the NN þ 3N-induced and
the NN þ 3N-full Hamiltonians for a range of flow parameters:
� ¼ 0:04 fm4 (d), 0:05 fm4 (r), 0:0625 fm4 (m), 0:08 fm4

(j). Solid symbols correspond to the exact 3N interaction,
open symbols to the NO2B approximation. Error bars indicate
the uncertainties of the threshold extrapolations of the IT-NCSM.
Data points are connected by straight lines to guide the eye,
beyond the largest Nmax an exponential extrapolation fitted to the
last four data points is shown.
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showing deviations below 1%. For� ¼ 0:08 fm4 the NO2B
approximation yields �310ð2Þ MeV and �472ð1Þ MeV
as compared to �309ð1Þ MeV and �468ð1Þ MeV for the
Nmax ¼ 8 ground-state energy with the exact NN þ
3N-induced and NN þ 3N-full Hamiltonians, respectively.

For a comprehensive picture of its anatomy, we analyze
the expectation values of the 3N interaction at different
levels of the NOnB approximation using IT-NCSM eigen-
states obtained with the exact 3N interaction for 4He, 16O,
and 40Ca for fixed Nmax. Figure 2 summarizes these expec-
tation values of the 3N interaction for a set of NN þ
3N-induced and NN þ 3N-full Hamiltonians. For 16O
and 40Ca a similar pattern emerges: The NO2B approxi-
mation does reproduce the expectation value of the exact
3N interaction very well, both for the NN þ 3N-induced
and the NN þ 3N-full Hamiltonian. The pattern observed
for the sequence of NOnB approximations is different for
both types of Hamiltonians. For NN þ 3N-induced the 1B
and 2B contributions of the normal-ordered Hamiltonian
have opposite sign, with the 1B contribution being signifi-
cantly larger, whereas for the NN þ 3N-full Hamiltonian
the 1B and 2B contributions are both attractive and of
similar size. In all cases the 0B contribution is the largest
and overestimates the exact 3N expectation value. For 4He
the pattern is different. The 0B term does not provide the
largest contribution and underestimates the 3N expectation
value. The signs and relative sizes of the 1B and 2B terms
again depend on the Hamiltonian, and the NO2B approxi-
mation still shows a sizable deviation from the exact 3N
expectation value, contrary to the single example presented
in Ref. [8].

This case study shows that there is no universal pattern
and no hierarchy in the individual NOnB contributions.
The size of the individual terms and also the deviation of
the NO2B approximation from the exact 3N result depends
on the Hamiltonian, the nucleus, and the oscillator fre-
quency. Nonetheless, the 3N expectation values in Fig. 2
and the ground-state energies in Fig. 1 demonstrate that the
NO2B approximation works very well beyond the lightest
nuclei.
Application in coupled-cluster theory.—After validating

the NO2B approximation, we are now applying it in ground-
state calculations for heavier closed-shell nuclei in the
framework of the coupled-cluster method. Coupled-cluster
theory is a natural framework since normal-ordering of the
Hamiltonian with respect to a reference state is inherent to
the formulation of the approach. We have developed an
efficient coupled-cluster code using the J-coupled scheme
discussed in Ref. [23], which enables us to go to very large
model spaces. We limit ourselves to coupled cluster with
singles and doubles excitations (CCSD), which has been
shown to be a good approximation for soft SRG-evolved
interactions [23]. An additional approximation present in
the CCSD calculations for technical reasons is a truncation
of the 3N matrix elements entering the NO2B to harmonic-
oscillator principal quantum numbers e1 þ e2 þ e3 �
E3max ¼ 14.
In a first step, we confront the CCSD results for 16O

with the previous IT-NCSM results, both using the NO2B
approximation. Figure 3 shows the convergence of the
ground-state energies in both methods using the NN þ
3N-induced and NN þ 3N-full Hamiltonian. We observe
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FIG. 2 (color online). Anatomy of the NOnB approximation of
the ground-state energies of 4He, 16O, and 40Ca. The bar charts
show the expectation values of the 3N interaction computed at
different levels of the normal-ordering approximation, i.e.,
NO0B, NO1B, NO2B, and exact 3N. We employ the NN þ
3N-induced and NN þ 3N-full Hamiltonians, each with two
values of � (see labels). We use the eigenstates obtained for
the exact 3N interaction in Nmax ¼ 10 for 4He and 16O and
Nmax ¼ 8 for 40Ca, all at @� ¼ 20 MeV.

-130

-120

-110

-100

-90

.

E
[M

eV
]

NN+3N-ind.

16O

IT-NCSM

NN+3N-ind.

Ω = 20 MeV

CCSD

2 4 6 8 10 12 14 16 18
Nmax

-150

-140

-130

-120

.

E
[M

eV
]

NN+3N-full

16 14 12 10 8 6 4 2
emax

NN+3N-full

FIG. 3 (color online). Comparison of the ground-state energies
of 16O obtained in IT-NCSM and CCSD including 3N interac-
tions at the NO2B level for the NN þ 3N-induced and the NN þ
3N-full Hamiltonians with � ¼ 0:04 fm4 (d), 0:05 fm4 (r),
0:0625 fm4 (m), and 0:08 fm4 (j).
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a very good agreement of the converged ground-state
energies, with the IT-NCSM giving 1 to 2 MeV more
binding. This difference is consistent with the contribu-
tions expected from triples corrections and the missing
3N matrix elements with E3max > 14. The latter point
has been confirmed by comparing to lower E3max cuts.
Altogether, the CCSD calculations for 16O with soft
SRG-evolved NN þ 3N Hamiltonians in NO2B approxi-
mation provide a ground-state energy within 1% to 2%
of the IT-NCSM results with the exact 3N interaction.
Using CCSD with the NO2B approximation we can now
study the systematics of ground-state energies with
SRG-evolved chiral NN þ 3N Hamiltonians beyond
16O. Following the analysis of Ref. [18] we discuss the
� dependence observed with the NN-only, the NN þ
3N-induced, and the NN þ 3N-full Hamiltonians for
16O and 24O, shown in Fig. 4, and for 40Ca and 48Ca,
shown in Fig. 5. For all nuclei we observe the same pattern:
The NN-only Hamiltonian exhibits strong � dependence
of the converged ground-state energies hinting at induced
3N interactions. Their inclusion at the NN þ 3N-induced
level eliminates the � dependence, thus providing a
strong indication that induced 4N contributions originat-
ing from the initial NN are irrelevant for ground-state
energies. The converged energies, therefore, correspond
to the solutions for the initial chiral NN interaction.
We obtain �120:2ðþ0:8Þ MeV for 16O ground-state
energy, �152:1ðþ0:5Þ MeV for 24O, �343ðþ6Þ MeV for

40Ca, and �392ðþ7Þ MeV for 48Ca using the NN þ
3N-induced Hamiltonian at � ¼ 0:04 fm4 for emax ¼ 14.
The numbers in parenthesis give the changewhen going to
� ¼ 0:08 fm4 as a measure for the residual� dependence.
These results are in very good agreement with the CC
results reported in Refs [23,24] for the bare chiral NN
interaction.
When including the initial 3N interaction, i.e., when

using the NN þ 3N-full Hamiltonian, the � dependence
reemerges, indicating that 4N terms induced by the initial
3N interaction become sizable. These CCSD results
confirm the findings of Ref. [18] and extend the system-
atics to heavier nuclei.
In addition to the standard chiral 3N interaction [17]

with cutoff momentum of 500 MeV, we also employ a
chiral 3N interaction with a modified cutoff of 400 MeV
and cE ¼ 0:098 refitted to reproduce the 4He binding
energy. We keep the value cD ¼ �0:2 as in the standard
3N interaction. Based on the findings of Ref. [17] a
selective change of the 3N cutoff or of cE will not affect
the triton lifetime. Effectively the lower cutoff reduces the
strength of the two-pion terms of the 3N interaction and
limits them to lower momenta. As a result the � depen-
dence and thus the induced 4N contributions are reduced
significantly. This allows for a quantitative comparison
of the NN þ 3N-full predictions with experimental
binding energies. We obtain ground-state energies of
�126:4ð�1:9Þ MeV for 16O, �164:8ð�2:8Þ MeV for
24O, �357ð�6Þ MeV for 40Ca, and �403ð�8Þ MeV for
48Ca using � ¼ 0:04 fm4 with the change when going to
� ¼ 0:08 fm4 given in parenthesis. The agreement with
experiment is remarkable. For 16O and 24O the predictions
based on the chiral NN þ 3N Hamiltonian reproduce the
experimental energies within the theoretical uncertainties.
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FIG. 4 (color online). CCSD ground-state energies for 16O and
24O as a function of emax for the three types of Hamiltonians (see
column headings) using the NO2B approximation for a range of
flow parameters: � ¼ 0:04 fm4 (d), 0:05 fm4 (r), 0:0625 fm4

(m), and 0:08 fm4 (j). The filled symbols for the NN þ 3N-full
Hamiltonian are for the standard chiral 3N interaction with
cutoff 500 MeV, the open symbols for a modified 3N interaction
with cutoff 400 MeV (see text).
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PRL 109, 052501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

3 AUGUST 2012

052501-4



Even for 40Ca and 48Ca the agreement with experiment is
surprisingly good, given the fact that no information beyond
4He was used to fix the Hamiltonian. This is evidence that
this chiral NN þ 3N Hamiltonian, although not fully con-
sistent regarding the chiral order and the cutoff choice in
NN and 3N terms, contains all the relevant physics for
nuclear structure predictions over a large mass range.

Conclusions.—We have demonstrated that the NO2B
approximation allows for accurate nuclear structure calcu-
lations using SRG-evolved chiral NN þ 3N Hamiltonians
in cases where the inclusion of the exact 3N interaction is
computationally too demanding. For many-body methods
that can handle 3N interactions exactly, normal ordering is
an option for including chiral 4N interactions. Therefore, it
provides a valuable tool to exploit the full physics potential
of chiral Hamiltonians. In this context we have shown that
a chiral 3N interaction with reduced cutoff can yield
binding energy systematics consistent with experiment—
ongoing investigations of the spectroscopy of p- and
sd-shell nuclei confirm the quality and universality of
this Hamiltonian. A generalization of the normal-ordering
approximation to open-shell systems and excited states
using multi-determinantal reference states [25] is the sub-
ject of present research.
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