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The question of whether the Universe is spatially homogeneous and isotropic on the largest scales is of

fundamental importance to cosmology but has not yet been answered decisively. Surprisingly, neither an

isotropic primary cosmic microwave background (CMB) nor combined observations of luminosity

distances and galaxy number counts are sufficient to establish such a result. The inclusion of the

Sunyaev-Zel’dovich effect in CMB observations, however, dramatically improves this situation. We

show that even a solitary observer who sees an isotropic blackbody CMB can conclude that the Universe is

homogeneous and isotropic in their causal past when the Sunyaev-Zel’dovich effect is present. Critically,

however, the CMB must either be viewed for an extended period of time, or CMB photons that have

scattered more than once must be detected. This result provides a theoretical underpinning for testing the

cosmological principle with observations of the CMB alone.

DOI: 10.1103/PhysRevLett.109.051303 PACS numbers: 98.70.Vc, 98.80.Jk

The current concordance model of cosmology is based
on the homogeneous and isotropic Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) solutions of Einstein’s equa-
tions. The high degree of symmetry assumed in these
solutions makes them sufficient to explain the near perfect
isotropy of the cosmic microwave background (CMB) and
other astrophysical observables, but it remains to be dem-
onstrated whether or not they are the only spacetime ge-
ometries that are compatible with the data. This question is
particularly pertinent due to the apparent necessity that
more than 95% of the matter content of the Universe
must be in the form of dark energy and dark matter in
order for the concordance model to be made compatible
with observations. The inferred existence of these substan-
ces holds such profound consequences for our understand-
ing of basic physics that establishing the validity of the
assumed FLRW geometry is now an imperative. So, what
observables are required in order to prove the Universe is
FLRW on large scales?

An important step toward answering this question was
provided by Ehlers, Geren, and Sachs (EGS) [1], and later
fleshed out by others [2,3] (see [4] for a review). These
authors used the Copernican principle, that we are typical
observers, to show that isotropy of the CMB about every
point in a region of spacetime is only possible if the
geometry of spacetime in that region is spatially homoge-
neous and isotropic. This result is perturbatively stable in
the sense that near isotropy of the CMB implies near
homogeneity of spacetime, although this requires extra
assumptions about unobservable quantities [5–8]. An alter-
native proof of spatial homogeneity using luminosity dis-
tances, that also relies on the Copernican principle, was
found by Hasse and Perlick [9]. While compelling, these

theorems all require observations to be made at all points in
a region of spacetime to make definite conclusions.
Isotropy of the CMB on our own sky is not even sufficient
to determine that our local region of space is isotropic
around us [10].
Alternatively, the authors of [11] have shown that in

order to determine whether the Universe is isotropic
around us it is necessary and sufficient to have isotropic
observations of luminosity distances, number counts, lens-
ing, and angular peculiar velocities at every redshift, and in
every direction. To then determine spatial homogeneity
requires an extra independent observable beyond these
four, unless one is prepared to specify the value of �
a priori (assuming dark energy is due to the cosmological
constant [12]) [13]. While this prescription for determining
spatial homogeneity and isotropy has the important quality
of relying solely on directly observable quantities, rather
than the Copernican principle, it also requires large
amounts of information from a number of different
observables.
Here we show that inclusion of the Sunyaev-Zel’dovich

(SZ) effect when considering CMB observations allows
one to retain the minimal observational requirements of
EGS, while removing the assumption of the Copernican
principle. The SZ effect is due to the scattering of CMB
photons by charged matter, and has already been shown to
be a powerful tool for constraining radial inhomogeneity
within the class of cosmological models constructed from
the Lemaı̂tre-Tolman-Bondi solutions [14–23]. We extend
these previous studies to consider the potential of the SZ
effect to act as proof of FLRW geometry, rather than
simply as a tool for constraining particular deviations
away from it. This results in a stronger statement than
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that of EGS, as it requires observations made by only a
single observer, rather than from all observers in a region
of spacetime. It is a much less demanding statement than
the result of [11], as it requires observations of the CMB
only (although the CMB must be viewed for an extended
period of time, or photons that have scattered more than
once must be detectable).

The SZ effect is often divided into two different contri-
butions: the thermal SZ effect (tSZ) [24] and the kinematic
SZ effect (kSZ) [25]. The former of these describes the
transfer of energy from the hot electrons in the intra-cluster
medium to the cooler photons of the CMB. This is the
easiest of the two effects to detect observationally, but is
the least important for our current considerations. We will
assume here that the tSZ effect is well understood and can
be removed from the CMB signal along with other un-
wanted foreground sources (a process that will certainly be
complicated by relativistic corrections).

The kSZ effect also alters the spectrum of the scattered
light, but this is due to the anisotropy seen in the CMB sky
of the scatterer rather than any transfer of energy from
baryons to photons in the baryon rest frame. In a FLRW
spacetime, any such anisotropy is due to the peculiar
motion of the scatterer. In the rest frame of the scatterer,
the rescattered light then maintains the same distribution
function it had before the scattering event (all other
changes being encapsulated in the tSZ), so that an observer
in the rest frame of the CMB must see radiation that
undergoes a Lorentz boost after scattering. For the case
of blackbody radiation this corresponds solely to a change
in temperature of the scattered radiation. This mechanism
therefore provides, in effect, a set of mirrors that allows us
to view the CMB from different locations. We shall, there-
fore, refer to the light scattered into our line of sight as
being reflected by the scatterer (which we will refer to as a
cluster, for simplicity).

The picture described above is valid in a FLRWuniverse
with an isotropic radiation field, but in the present study
this is exactly the thing wewant to prove the existence of. It
is, therefore, necessary to generalize the existing concept
of the kSZ effect.

The picture we have for this generalized scenario is
illustrated in Fig. 1. As we look back along our past null
cone we will see the reflecting clusters, whose own past
null cones coincide with ours in one direction, but
otherwise crosses the last scattering surface within our
causal past. If there exist sufficiently many clusters, we
will receive photons from every part of the last scattering
surface that we are causally connected to, rather than from
just the single sphere that we observe directly. We assume
that the formation of the last scattering surface proceeds in
thermal equilibrium, so that the emitted radiation is black-
body, and that the Universe is optically thin at all times and
everywhere after last scattering. Scattering off the clusters
can then result in a possible temperature change, but the

spectrum must remain a blackbody as Lorentz transforma-
tions at the point of reflection, and cosmological evolution
in an arbitrary spacetime, both preserve the form of a
blackbody spectrum. Also illustrated in Fig. 1 is the pos-
sibility of photons being scattered off two clusters before
they reach us, which we will return to later.
Let us denote the incident temperature in each direction

on the reflecting cluster’s sky as Ti ¼ Tið�;�; zÞ, where �
and � are spherical polar coordinates on their sky, chosen
such that � ¼ � is the direction of the eventual observer
(us), and z is the redshift of the cluster on the eventual
observer’s sky. The occupation number of photons received
from a particular direction (�, �) on the cluster’s sky can

be written as Ni ¼ Bð�; TiÞ, whereBð�;TÞ¼ ðe�=T�1Þ�1,
are the occupation numbers of a blackbody spectrum with
frequency �, and where we have set kB ¼ h ¼ 1. The
fraction of light that is reflected towards the observer
from every direction on the cluster’s sky is given by the
Thomson cross-section, which, after the effects of the tSZ
effect have been removed, gives the occupation number of
the reflected light in the rest frame of a particular cluster as
Nrð�;Ti;zÞ¼ 3

16�

R
�ð1þcos2�ÞBð�;TiÞsin�d�d�, where

� � 1 is the electron-scattering optical depth of the clus-
ter, which is assumed to fill the telescope beam. We now
want to know the conditions on incident radiation on the
cluster, Ti ¼ Tið�;�; zÞ, for the sum of the reflected light
and the unscattered light to have a blackbody spectrum
when it is observed at z ¼ 0. Recall that blackbody spectra
are unchanged after propagating though spacetimes with
arbitrary curvature, up to a change in temperature by one
factor of redshift [26], so we can write the observed tem-
perature of any blackbody distribution as �T ¼ T=ð1þ zÞ
(where z is the redshift at which it had temperature T).
For a continuous distribution of matter we can also write
the reflected radiation in some interval �z along one
of our own past-directed null geodesics as Nrð�; Ti; zÞ�z.
The distribution function of photons that make it to
us is then given by Ntot ¼ Bð�; �TcÞ þ

R
Nrð�; �Ti; zÞdz�R

Nrð�; �Tc; zÞdz, where TcðzÞ¼Tið0;0;zÞ is the tempera-

ture of the unscattered light at redshift z [27]. The first term
on the right-hand side of this equation is the contribution

FIG. 1 (color online). The kSZ effect provides information
about the CMB sky at other points on our past light cone.
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from the unscattered CMB, the second term is CMB ra-
diation that is scattered towards us (that we would other-
wise not be able to observe), and the third term is the
CMB radiation that is scattered away from us (that would
otherwise reach us in the absence of any scattering). For
Ntot to be a blackbody with some temperature T0 we
then require Ntot ¼ Bð�; T0Þ. If we change variables to
x ¼ � cos�� 1

3 cos
3�, and expand each term in a power

series around its temperature, we get

X
n;k

cn
n

k

 !
ð�1Þk�n�k

�
ð �Tk�n

c � Tk�n
0 Þ

þ
Z 3�

16�
ð �Tk�n

i � �Tk�n
c Þdxd�dz

�
¼ 0; (1)

where cn ¼ ð�1ÞneAnðeÞ=n!ðe� 1Þnþ1, and AnðxÞ are the
Euler polynomials. It can be shown that AnðeÞ are positive
definite, so that the cn have sign ð�1Þn. Now, Eq. (1) must
be true for each value of n� k, as nothing here is a
function of � except �n�k itself. For n� k ¼ j we there-
fore have

X1
n¼0

cn
n

j

 !
ð�1Þðn�jÞ

�
ð �T�j

c � T�j
0 Þ

þ
Z 3�

16�
ð �T�j

i � �T�j
c Þdxd�dz

�
¼ 0; (2)

for all j � 0. In the j ¼ 1 and j ¼ 2 cases, we also haveP1
n¼0 ncnð�1Þn�1 � 0 and

P1
n¼0 nðn� 1Þcnð�1Þn�2 � 0,

as cnð�1Þn�1 < 0 and cnð�1Þn�2 > 0 for all n. It must then
be the case that

�
1� 3

16�

Z
�dxd�dz

��
1
�Tc

� 1

T0

�
2

þ
Z 3�

16�

�
1
�Ti

� 1

T0

�
2
dxd�dz ¼ 0: (3)

For � � 0 and
R
�dxd�dz < 16�=3we therefore have that

�T�1
i ¼ �T�1

c ¼ T�1
0 . The first of these conditions is that

there should exist scatterers everywhere, and the second is
that the amount of reflected radiation must be less than the
amount of the incident radiation (from the Beer-Lambert
law). We therefore have that Tið�;�; zÞ ¼ Tc for every �
and �, at every z where � � 0. We also have that Tc ¼
ð1þ zÞT0, so that the temperature of the observed CMB
must be the same as the emitted CMB, up to a factor of
redshift. This result shows that the CMB must be isotropic
about every reflecting cluster, and is essentially due to the
fact that blackbody spectra of different temperatures cannot
be summed to give another blackbody spectrum [28].

This result tells us that if the CMB was emitted from a
thermal process as a blackbody, and is observed as a
blackbody today, then the CMB sky at every point on our
past light cone must be isotropic. Any anisotropies at any
point on our past light cone would cause distortions in the

spectrum of radiation we observe. Surprisingly, this is not
yet restrictive enough to require FLRW geometry.
Up to this point, we have only considered the CMB sky

of observers at other points on our past null cone. This is
not sufficient to establish either homogeneity or isotropy of
space around any point, however, as we also require infor-
mation about derivatives of geometric quantities and the
matter content of the Universe in order to propagate infor-
mation off our past null cone.
The starting point for this is the Boltzmann equation for

photons, which in general involves a collisional term for
the Thomson scattering. This term is proportional to
changes in the distribution function [29], and as we have
shown that a vanishing kSZ effect implies isotropy of the
CMB about every cluster, this means that the collision term
must vanish at every cluster where the kSZ effect vanishes.
Hence, it is sufficient for us to consider the collisionless
Liouville equation. This tells us that if every timelike
observer following a congruence ua sees an isotropic ra-
diation field then ua must be (parallel to) a conformal
Killing vector, and the spacetime must be conformally
stationary [1]. The anisotropic pressure evolution equation
that is derived from the quadrupole of the Liouville equa-
tion then tells us that ua must be shear-free and that the
acceleration Aa ¼ ubrbua and expansion rateH ¼ 1

3rau
a

must satisfyr½aðAb� �Hub�Þ ¼ 0. One now needs to make

assumptions about the matter content in order to make
further statements. For an irrotational, geodesic perfect
fluid, it follows that the spacetime must be FLRW [30].
The radiation-only case is the original EGS result [1]. In
the case of a mixture of dust, radiation and dark energy
in the form of a scalar field (for which� is a special case) a
little more work is required [3] because one cannot assume
ab initio that the gradient of the scalar field is aligned with
the dust observers, but isotropy implies it must be and so
the result still holds. The EGS theorem holds in general
scalar-tensor theories of gravity [31].
The final stage of our result therefore requires us to show

that the CMB must be isotropic inside our past light cone,
as well as on it. We can see two possible ways of doing this.
(1) If we observe the CMB for a finite interval of time

[32]. This would allow us to receive information about the
CMB sky of all observers in the 4-dimensional region of
spacetime swept out by our past null cone over this inter-
val. If no kSZ effect is measured at any time, then one can
infer that the entire region is filled with clusters that see
isotropic CMB radiation. The region must therefore have
FLRW geometry, and taking any surface within it as an
initial Cauchy surface, we can establish that our entire
causal past must also be FLRW.
(2) If we can observe CMB radiation that has been

scattered more than once [33,34], as was suggested in the
original paper by Sunyaev and Zel’dovich [25]. This situ-
ation is illustrated by the existence of the ‘‘second scat-
terer’’ in Fig. 1. If such scattering is observable the CMB
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sky of the second scatterers must also be isotropic if we are
still to observe the re-scattered CMB photons as being a
blackbody (the proof of this can be found in the Appendix).
Note that only two scatterings are required, as this is
sufficient to show that the CMB must be isotropic around
every point in our causal past.

The situation we have considered here is of course
highly idealized. The CMB is neither exactly isotropic
nor blackbody, and our treatment of the scattering events
themselves is also idealized. In reality, we see only a
limited number of scatterings that must necessarily only
happen at relatively late times (when structure has formed).
Also, the removal of the tSZ effect will undoubtedly
always be imperfect, as will the subtraction of other fore-
ground sources. Furthermore, we have been somewhat
optimistic in considering that it may be possible to observe
the CMB for an extended period of time, or that double
scattering events can be detected. Nevertheless, we have
demonstrated what is required to show that the Universe is
FLRW using the CMB alone, without assuming anything
about the symmetries of spacetime on the largest scales.
Our result holds provided dark energy can be described as a
scalar field; it also holds for general scalar-tensor theories
of gravity.

To make these ideas more realistic, they need to be
shown to be perturbatively stable, which is nontrivial
[5–7]. An application to the real Universe will also require
careful consideration of the consequences of imperfect
observations and noncontinuous scatterers. We leave this
for future work.

Appendix: Multiple scatterings.—Let us denote quanti-
ties evaluated at the primary observer (us) with a subscript
0, and those evaluated at the first and second scatterings
with A and B, respectively. The redshift of a first scatterer,
as measured by the primary observer, is then zA, and the
redshift of a second scatterer, as measured by a first scat-
terer, is zB. Angular coordinates on the sky of the first and
second scatterers will be written as (�A, �A) and (�B, �B).
The temperature of CMB radiation measured on these
scatterers’ skies are then TA ¼ TAð�A;�A; zAÞ and TB ¼
TBð�A;�A; zA; �B;�B; zBÞ. Using this notation, the occu-
pation number of CMB photons at the primary observer is

Ntot ¼ Bð�; �TcÞ þ 3

16�

Z
�ðYAÞ½Bð�; �TAÞ �Bð�; �TcÞ�dYA

þ 9

ð16�Þ2
Z

�ðYAÞ�ðYBÞ½Bð�; �TBÞ
�Bð�; �TAÞ�dYAdYB;

where we have written YA ¼ fxA;�A; zAg, dYA ¼
dxAd�AdzA, etc. The first term on the right-hand side of
this equation is from the unscattered CMB, and the second
term is from the CMB light scattered toward and away
from us by photons that are scattered once. The third term
on the right-hand side is new, and corresponds to photons
that are scattered towards and away from us by double

scatterings. The calculation now proceeds as in the single
scattering case, and results in

0 ¼
�
1� 3

16�

Z
�ðYAÞdYA

��
1
�Tc

� 1

T0

�
2

þ 9

ð16�Þ2
Z

�ðYAÞ�ðYBÞ
�
1
�TB

� 1

T0

�
2
dYAdYB

þ 3

16�

Z
�ðYAÞ

�
1� 3

16�

Z
�ðYBÞdYB

�

�
�
1
�TA

� 1

T0

�
2
dYA:

For � � 0 and
R
�dY < 16�=3, we therefore have that

TA ¼ TB ¼ Tc ¼ ð1þ zÞT0. The inclusion of third and
higher- order scatterings will proceed in an analogous way.
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