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Using a rigorous method of matched asymptotic expansions, I derive the equation of motion of a small,

compact body in an external vacuum spacetime through second order in the body’s mass (neglecting

effects of internal structure). The motion is found to be geodesic in a certain locally defined regular

geometry satisfying Einstein’s equation at second order. I outline a method of numerically obtaining

both the metric of that regular geometry and the complete second-order metric perturbation produced by

the body.
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Introduction.—The governing equation of general rela-
tivity, the Einstein field equation (EFE), describes how
bodies influence spacetime curvature and move within
the resultant curved geometry. Yet, since the seminal
work of Einstein, Infeld, and Hoffman in 1938 [1], study
of this nonlinear problem of motion has largely focused on
the post-Newtonian limit of slow motion and weak fields.
In the strong-field regime, bodies have instead typically
been approximated as test bodies moving in a spacetime
that is unaffected by them. Only within the last fifteen
years [2,3] has there arisen an analytical description of
the gravitational backreaction: the body’s perturbative ef-
fect on spacetime geometry and that perturbation’s effect
on the body’s motion. In the case of a small mass m, this
backreaction is called the gravitational self-force, and it is
now well understood at linear order in m [4–7]. Beyond its
foundational role, the self-force is also potentially of great
astrophysical importance, as it describes the evolution of
extreme-mass-ratio inspirals (EMRIs), in which a stellar
black hole or neutron star spirals into a supermassive black
hole. Such systems are predicted to be key sources for the
planned gravitational wave detector LISA [8], and they
will afford both a unique probe of strong-field dynamics
and a map of the spacetime near black holes. The self-force
also provides an essential point of comparison with other
treatments of the problem of motion: it complements post-
Newtonian theory [9,10] and fully nonlinear numerical
simulations [10,11], both of which are ill-suited to extreme
mass ratios; and it fixes mass-dependent parameters in
effective one-body theory [12–14].

However, to extract orbital parameters from a waveform
emitted by an EMRI, one requires a theoretical description
accurate to second order in the small mass, as shown
by either naive or rigorous [15] scaling arguments.
Furthermore, comparisons with numerical simulations
suggest that the second-order self-force would provide a
highly accurate description of intermediate-mass-ratio
binaries and even a reasonably accurate description of
similar-mass binaries [10,11], both of which should soon
be observed by the ground-based detector Advanced LIGO

[16,17]. The second-order force would also fix effective
one-body parameters quadratic in m. Although some work
on the second-order problem has been done [18,19], it was
performed in an impractical gauge, with no clear means of
calculating the force or the perturbation producing it, and
the basis of its approach was problematic [5–7,20].
Detweiler has recently [21] examined the general features
of the second-order problem, but he made use of ill-defined
equations and assumed (rather than derived) the equation
of motion and a regularized second-order stress-energy
tensor. Harte [22] has derived an equation of motion valid
at all orders, but his derivation does not apply to the motion
of black holes. None of these studies has provided a
definite expression for, or means of calculating, the physi-
cal second-order metric perturbation or the piece of it that
determines the motion.
In this Letter, I present the first complete description,

explicitly determining both the equation of motion and the
metric perturbation. I use the self-consistent formalism
presented in [6]. This formalism incorporates the small
body’s finite size, involving no infinities or regularization;
it defines a worldline � that reflects the body’s motion
(even a black hole’s) on any time scale; it determines the
equation of motion directly from the EFE, with no further
axioms; and it presents the perturbative EFEs in a hyper-
bolic form convenient for numerical implementation. For
simplicity, I take the body to be spherical and nonspinning,
neglecting higher multipole moments. I work in units of
G ¼ c ¼ 1. Greek indices range from 0 to 3. Lower case
Latin indices refer to spatial coordinates. Further details
will appear in a follow-up article [20].
Self-consistent formalism.—I combine two approximate

solutions to the EFE, utilizing the method of matched
asymptotic expansions [7,23–25]. Suppose g��ð�Þ is an

exact solution containing the small body on a manifold
M, where � is an expansion parameter that counts powers
of the body’s mass. Now let r be some measure of distance
from the body and R represent the spacetime’s length
scales, excluding those of the body itself. For r�R,
well outside the body, in any global coordinates x� in a
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vacuum region � (e.g., Boyer-Lindquist coordinates
of the supermassive black hole in an EMRI), I use the
outer expansion g��ðx�; �Þ ¼ g��ðx�Þ þ h��ðx�; �Þ on a

manifold ME. ðg��;MEÞ defines an external background

spacetime with no small body in it, and h��ðx;�Þ¼P
n�1�

nhðnÞ��ðx;�ð�ÞÞ describes perturbations due to the

body, whose motion in ME is represented by �. For r�
�R, very near the body, the metric varies rapidly, and
there, in any coordinates ðT; XaÞ approximately centered

on the body, I use the inner expansion g��ðT; Xa=�; �Þ ¼
gI��ðT; Xa=�Þ þP

n�1�
nHðnÞ

��ðT; Xa=�Þ on a manifold

MI. ðgI��;MIÞ is the body’s spacetime were it isolated,

and HðnÞ
�� describes perturbations due to interactions with

the external spacetime. The scaled coordinates Xa=� serve
to keep the body’s mass and size fixed in the limit � ! 0,
sending all other distances toward infinity; the use of a
single rescaling factor makes the approximation most ap-
propriate for compact bodies, in which the linear dimen-
sion is comparable to the mass (in geometrized units).
Scaling only distances, not T, is equivalent to assuming
the body possesses no fast internal dynamics.

In a buffer region around the body, defined by � �
r=R � 1, either expansion may be used, and since they
approximate the same metric, they must agree: the inner
expansion can be expressed in unscaled coordinates and
then expanded for r=R � �, the outer expansion can be
expanded for r=R � 1, and the two results must match

order by order in r and �. It follows [6] that hðnÞ�� � 1=rn þ
Oðr�nþ1Þ, and the 1=rn term is determined by the (n� 1)th
multipole moment of gI��. If r is a radial coordinate

centered on � and this form of hðnÞ�� holds true, then both
the body—in the full spacetime—and �—in the back-
ground spacetime—lie in the region surrounded by the
buffer. If all mass dipole terms also vanish in this coordi-
nate system, then the body is appropriately centered on �.

In standard perturbation theory, the linearized EFE
would constrain � to be a geodesic in g��. To avoid this,

I write the full, nonlinear EFE in � in relaxed form by
imposing the Lorenz gauge condition on the whole of h��,

rather than on each term hðnÞ��:

g��r�
�h�� ¼ 0; where �h�� � h�� � 1

2g��g
��h��: (1)

The exact vacuum EFE in �, R�� ¼ 0, then splits into a

sequence of wave equations,

E��½hð1Þ� ¼ 0; (2)

E��½hð2Þ� ¼ 2	2R��½hð1Þ�; (3)

etc., where E�� is the linear wave operator E��½h� ¼
hh�� þ 2R�

�
�
�h��, R���� is the Riemann tensor of

the external background g��, and 	2R�� is the part of

the Ricci tensor quadratic in the metric perturbation. No

stress-energy tensor for the body appears here, since the
body lies outside �. Equations (2) and (3) can be solved
for arbitrary �, the equation of motion of which is then
determined by the gauge condition. That condition will
involve �’s �-dependent acceleration a�ð
; �Þ, where 
 is
proper time on �, and I split Eq. (1) into a sequence of

equations for each hðnÞ�� by substituting into it an expansion

a� ¼ P
n�0�

naðnÞ�.
Outer expansion.—In the buffer region, I construct the

most general possible solution to the wave equations (2)
and (3) and gauge condition (1). That local solution is then
used to construct a global solution. I work in Fermi-Walker
coordinates ðt; xaÞ centered on �, where t coincides with 

on � and xi are Cartesian coordinates on the spatial sub-

manifold transverse to � at time t. I assume each hðnÞ�� can

be expanded for small geodesic distance r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ijx

ixj
q

. So

at first order,

hð1Þ��ðt; xaÞ ¼
X

m��1;‘�0

rmhð1;m;‘Þ
��L ðtÞn̂L; (4)

where L � i1 � � � i‘, ni � xi=r is a radial unit vector, and

n̂L � nhi1 � � � ni‘i is the symmetric and trace-free (STF)
combination of ‘ such unit vectors; this decomposition in
terms of n̂L is equivalent to an expansion in spherical
harmonics [26]. Substituting (4) into (2), one finds that
each term in Eq. (4) must satisfy a Poisson equation,P

‘@
i@iðrmn̂LÞhð1;m;‘Þ

��L ðtÞ ¼ rm�2
P

‘S
ð1;m;‘Þ
��L ðtÞn̂L. The source

Sð1;m;‘Þ
��L is a linear combination of the lower-order terms

hð1;m
0<m;‘0Þ

��L0 ; it involves derivatives, a�, and R����. The

general solution to this Poisson equation consists of a
homogeneous solution, comprising the single mode

hð1;m;‘HÞ
��LH

where ‘H ¼ m for m � 0 and ‘H ¼ �m� 1 for

m<0, plus a particular inhomogeneous solution with

modes hð1;m;‘ÞP
��L directly proportional to Sð1;m;‘Þ

��L . Given

how Sð1;m;‘Þ
��L is constructed, clearly each hð1;m;‘ÞP

��L is a linear

combination of the lower-order modes h
ð1;m0	m;‘0HÞ
��L0

H
; there-

fore, the general solution [of the form (4)] to Eq. (2) is

wholly determined by the functions hð1;m;‘HÞ
��LH

ðtÞ. The first of
these, hð1;�1;0Þ

�� , is fixed to be 2m	��, where m is the

Arnowitt-Deser-Misner mass of the inner background

gI�� [5,6]. All the others, hð1;m�0;‘HÞ
��LH

, are undetermined at

this stage. It will thus prove convenient to split the general

solution into two pieces: hð1Þ�� ¼ hð1ÞS�� þ hð1ÞR�� . I define the

regular field hð1ÞR�� to comprise all terms involving the

undetermined functions hð1;m�0;‘HÞ
��LH

. It reads

hð1ÞR�� ¼ hð1;0;0Þ�� ðtÞ þ rhð1;1;1Þ��i ðtÞni þOðr2Þ: (5)

The singular field hð1ÞS�� then comprises all the other terms; it

is the particular solution obtained by setting hð1;m�0;‘HÞ
��LH

¼ 0.

It reads
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hð1ÞS�� ¼2m

r
	��þhð1;0;1Þ��i ðtÞniþr

X
‘¼0;2

hð1;1;‘Þ��L ðtÞn̂LþOðr2Þ;

(6)

where the functions hðn;m;‘Þ
��L ðtÞ are linear in m. I stress that

this split is merely a convenient grouping of terms in the
general solution in the buffer region, with no impact on the

results. When so defined, hð1ÞS�� and hð1ÞR�� are each solutions

to the first-order field equations in �. hð1ÞS�� can be inter-
preted as the body’s bound field; it is determined solely by
the fact that a compact body lies in the region surrounded by

the buffer. hð1ÞR�� is a homogeneous (local) solution to the
wave equation even at r ¼ 0, propagating independently of
the body; as a homogeneous solution, it can be determined
only by global boundary conditions. Imposing the gauge
condition determines the isotropic, 	�� form of the m=r

term given above, as well as determining that the body
behaves approximately as a test particle, with constant
mass (i.e., @tm ¼ 0) and approximately geodesic motion

(i.e., að0Þ� ¼ 0).
One can provewith distributional [5] or Green’s function

[6] methods that hð1Þ��, because of its m=r term, is sourced

by the stress-energy tensor of a point particle, Tð1Þ�� ¼R
� mu�u� 	4ðx��z�ð
ÞÞffiffiffiffiffi�g

p d
, where z�ð
Þ is the parametriza-

tion of �, u� � dz�

d
 , and g is the determinant of g��.

Therefore, at distances in the buffer region or greater, the

body appears as a point mass. With this determined, hð1Þ��

can be found globally by solving the wave equation

E��½hð1Þ� ¼ �16� �Tð1Þ
��, where an overbar indicates trace

reversal. Using retarded boundary conditions, for example,
the global solution will then fix the locally undetermined

field hð1ÞR�� . Numerous methods have been used to accom-

plish this [4]. In the case that hð1Þ�� contains no contribution
from incoming waves at infinity, doing so determines [6]

that at least through order r, hð1ÞR�� is the Detweiler-Whiting
regular field [27].

The second-order solution proceeds almost identically.
I assume an expansion

hð2Þ��ðt; xaÞ ¼
X

m��2;‘�0

rmhð2;m;‘Þ
��L ðtÞn̂L

þ lnr
X

m�0;‘�0

rmhð2;m;ln;‘Þ
��L ðtÞn̂L; (7)

where the logarithmic terms arise from the correction
�m lnðr=2m� 1Þ to the light cones in the buffer region
(where r � m) [6]. Substituting this into Eq. (3), together

with an expansion of hð1Þ�� up to order r2, and finding the
general solution at each order again allows the convenient

split hð2Þ�� ¼ hð2ÞR�� þ hð2ÞS�� . However, here I define hð2ÞR��

to comprise not just all terms involving the undetermined

functions hð2;m;‘HÞ
��LH

ðtÞ, but also all terms quadratic in hð1ÞR�� .

This guarantees that hð2ÞR�� satisfies E��½hð2ÞR� ¼
2	2R��½hð1ÞR�, such that g�� þ �hð1ÞR�� þ �2hð2ÞR�� satisfies

the vacuum EFE through order �2. Explicitly,

hð2ÞR�� ¼ hð2;0;0Þ�� ðtÞ þ rhð2;1;1Þ��i ðtÞni þOðr2Þ; (8)

terms quadratic in hð1ÞR�� would appear at order r2. The

singular field hð2ÞS�� , comprising all other terms in the gen-
eral solution, then reads

hð2ÞS�� ¼ 1

r2
X
‘¼0;2

hð2;�2;‘Þ
��L n̂L þ 1

r

X3
‘¼1

hð2;�1;‘Þ
��L n̂L

þ 2	m��

r
þ X4

‘¼1

hð2;0;‘Þ��L n̂L þ r
X

‘¼0;2;3;4;5

hð2;0;‘Þ��L n̂L

þ lnr½hð2;0;ln;0Þ�� þ rhð2;1;ln;1Þ��i ni� þOðr2Þ; (9)

where 	m�� is a masslike tensor defined on �. The explicit

terms in this expansion can be found in Ref. [6] through
order r0 when a� ¼ 0, and they will be written out in full

in the follow-up article [20]; the functions hð2;m;‘Þ
��L ðtÞ are

linear combinations of m2, mhð1ÞR�� , and 	m��. The body’s

dipoles (i.e., those of gI��) would contribute to hð2ÞS�� , but I

set the spin to zero for simplicity and the mass dipole to
zero to ensure that � accurately represents the body’s

motion. Note that my definition of hð2ÞR�� means that hð2ÞS��

satisfies not Eq. (3), but E��½hð2ÞS� ¼ 2	2R��½hð1Þ� �
2	2R��½hð1ÞR�.
As at first order, the gauge condition determines the

form of 	m��, as given in Table I, along with the first-

order acceleration,

að1Þi ðtÞ ¼ 1
2h

ð1;1;1Þ
tti ðtÞja�¼0 � hð1;0;0Þti;t ðtÞja�¼0: (10)

The evaluation at a� ¼ 0 is to be performed only at time t,
leaving the past history of � unchanged; this follows from
the presumed expansion of a�, and it prevents a need for
order reduction [4,6]. One can show Eq. (10) is equivalent

to the geodesic equation in g�� þ �hð1ÞR�� at order � [4].

Using the same Green’s-function method [6] as at first
order, one can straightforwardly prove that the terms in-
volving 	m�� have a point source, the trace reversal of

which is given by the effective stress-energy tensor

Tð2Þ
�� ¼

Z
�

1

2
	m��ð
Þ	

4ðx� � z�ð
ÞÞffiffiffiffiffiffiffi�g
p d
: (11)

TABLE I. Components of 	m��ðtÞ in terms of the first-order

regular field hð1ÞR�� ðt; r ¼ 0Þ ¼ hð1;0;0Þ�� ðtÞ.
	mtt ¼ �mhð1;0;0Þtt � 1

6m	ijhð1;0;0Þij

	mta ¼ � 2
3mhð1;0;0Þta

	mab ¼ 	abð13mhð1;0;0Þtt þ 5
18m	ijhð1;0;0Þij Þ þ 1

3mhð1;0;0Þhabi
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The global solution to the second-order EFE sourced by the
body can then be obtained numerically via a puncture
scheme [28]: Outside a tube � around the body, one can
solve Eq. (3) directly; inside the tube, one can use an

approximation ~hð2ÞS�� to hð2ÞS�� , given by Eq. (9) without the

‘‘Oðr2Þ’’ term, and a regular field ~hð2ÞR�� � hð2Þ�� � ~hð2ÞS�� ,

which satisfies

E��½~hð2ÞR� ¼ �16�Tð2Þ
�� þ 2	2R��½hð1Þ� � E��½~hð2ÞS�:

(12)

All divergent terms on the right-hand side cancel, leaving
~hð2ÞR�� to solve a wave equation with a regular source. At �,

the analytical expression for ~hð2ÞS�� can be added to the

numerical solution to Eq. (12) and the sum matched to

the solution on the outside. Since ~hð2ÞR�� will agree with hð2ÞR��

through order r, this procedure will also determine

hð2;0;0Þ�� ðtÞ and hð2;1;1Þ��i ðtÞ, which we shall find are the only

pieces of hð2Þ�� that appear in the second-order acceleration.
This puncture scheme can be implemented immediately
after transforming Eq. (9) to a desired coordinate system.

Matching to an inner expansion.—One could proceed

with the same method to find hð3Þ�� together with að2Þ�.
I instead take a more efficient route by determining að2Þ�
from additional information about the inner expansion. I
take the small body to be a Schwarzschild black hole. Since
the inner expansion affects the outer one solely through the
body’s multipole moments, this amounts to neglecting
nonmonopole moments, as was done in the preceding
section. Beyond effects of those moments, the equation
of motion I derive will hold for any compact body. I also
specify the perturbations to be produced by tidal fields.
These fields are of quadrupole order and higher, and while
they produce mass and spin perturbations via tidal heating
and torquing, dimensional analysis shows those perturba-
tions do not contribute at the orders in � of interest. With
these specifications, I follow the procedure in Ref. [7],
insisting that in a suitable mass-centered coordinate sys-
tem, this inner expansion must equal the outer expansion in
Fermi-Walker coordinates when expanded in the buffer
region, up to a unique gauge transformation that excludes
spatial translations at �; this ensures the desired relation-
ship between � and the mass-centered inner expansion.
Here, ‘‘mass-centered coordinate system’’ means one in
which the mass dipole of gI�� vanishes along with all even-

parity dipole perturbations that behave as a mass dipole,
scaling as 1=r2 in the buffer region. Other even-parity
dipole perturbations are also set to zero in order to leave
no residual gauge freedom. Because the Fermi-Walker
coordinates are �-dependent, each term in the outer expan-
sion depends on a�. Hence, prior to matching the metrics,

I substitute a� ¼ P
n�0�

na�ðnÞ into g�� þ
P

n�1�
nhðnÞ��.

A tidally perturbed Schwarzschild metric is given in
Ref. [29] in advanced Eddington-Finkelstein coordinates

and a light-cone gauge. The tidal fields are represented by
STF tensorial functions of time: Eij and Bij for electric-

and magnetic-type quadrupole tides and Eijk and Bijk for

analogous octupole tides; for the powers of r of interest,
hexadecapole and higher tidal fields would appear only at
order �3 in the outer expansion. Transforming to a suitable
Fermi-like coordinate system and expanding the result to
order �2 in the buffer region yields

g tt ¼ �ftt þ r2Hð2;2Þ
tti1i2

n̂i1i2 þ r3
X
‘¼2;3

Hð3;‘Þ
ttL n̂L; (13)

g ta ¼ r2
X3
‘¼1

Hð2;‘Þ
taL n̂L þ r3

X4
‘¼1

Hð3;‘Þ
taL n̂L; (14)

g ab¼fabþfn̂abþr2
X4
‘¼0

Hð2;‘Þ
abL n̂

Lþr3
X5
‘¼0

Hð3;‘Þ
abL n̂

L: (15)

Here, ftt ¼ 1� 2�m
r þ 2�2m2

r2
, fab ¼ ð1þ 2�m

r þ 4�2m2

3r2
Þ	ab,

and f ¼ �2m2

r2
describe the Schwarzschild metric in har-

monic coordinates. The coefficients Hð2;‘Þ
��L are functions

of �m=r forming linear combinations of EijðtÞ and BijðtÞ,
and Hð3;‘Þ

��L are linear combinations of _EijðtÞ, _BijðtÞ, EijkðtÞ,
and BijkðtÞ, where an overdot indicates a time derivative,

e.g., Hð2;2Þ
ttij ¼ �ð1� 5�m

3r þ 4�2m2

3r2
ÞEij.

If explicit appearances of � are set to zero, the metric of
Eqs. (13)–(15) reduces to that of a vacuum spacetime in

Fermi coordinates centered on a geodesic, with Eab ¼
Eð0Þ
ab þ �	Eab þ Oð�2Þ, Bab ¼ Bð0Þ

ab þ �	Bab þ Oð�2Þ,
Eabc¼Eð0Þ

abcþOð�Þ, and Babc ¼ Bð0Þ
abc þOð�Þ, where the

zeroth-order fields Eð0Þ
ab ,B

ð0Þ
ab , etc., are components of R����

and its first derivative evaluated at r ¼ 0. There is no

manifest appearance of the fields hðnÞR�� in Eqs. (13)–(15);
they are incorporated into the corrections 	Eab, 	Bab, etc.
More significantly, there is no term corresponding to an
acceleration; any such term would induce a mass-dipole-
like term and would vanish in mass-centered coordinates.
To match the expansions at orders � and �2, I seek a

unique transformation x� ! x� � ��ð1Þ� � �2�ð2Þ�
that brings the outer expansion into the form of

Eqs. (13)–(15). Decomposing �ð1Þ� and �ð2Þ� into irreduc-
ible STF pieces, one readily finds a unique transformation.
At each order in �, this transformation can be thought of
as putting the outer expansion into Fermi coordinates in
g�� þ �hR��. The order-� transformation is given in

Ref. [7] up to order-r terms in the metric; matching the
metrics exhausts all freedom in that transformation and

uniquely determines the standard result (10) for að1Þ�.
Matching order-�r2 terms in the metric fixes 	Eij and

	Bij in terms of hð1Þ��. The order-�2 transformation, when

carried to order-r terms in the metric, likewise uniquely
determines
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að2Þi ¼ 1
2h

ð2;1;1Þ
tti ja�¼0 � hð2;0;0Þti;t ja�¼0 þ hð1;0;0Þtt að1Þi

� 1
2h

ð1;0;0Þ
ti hð1;0;0Þtt;t � 11

3m _að1Þi ; (16)

where, as in Eq. (10), the evaluation at a� ¼ 0 occurs only
at time t. Summing �a�ð1Þ and �

2a�ð2Þ, one finds, up to Oð�3Þ
errors,

a� ¼ 1
2ðg�� þ u�u�Þðg�� � h

R�
� ÞðhR�;� � 2hR��;Þu�u;

(17)

where hR�� ¼ �hð1ÞR�� þ �2hð2ÞR�� . This is the geodesic equa-

tion in the locally defined regular metric g�� þ hR��, up to

terms cubic in hR��. g�� þ hR�� may trivially be extended to

a Cn (local) vacuum solution to the EFE, through order �2,
by finding the solution (7) through order rn.

Equation (17) agrees with the form of Harte’s equation
of motion [22] but represents a major advance: it has been
shown to apply to black holes, and it comes along with a

concrete means of calculating both að2Þ� and hð2Þ��.
Discussion.—I have shown that through second order in

its mass, a small body moves on a geodesic of a certain
locally defined regular metric. I have also derived results,
given by (9), (12), and (16), that (together with the first-
order equations) may be used to simultaneously evolve the
body’s position and find the perturbation due to it, thereby
solving the EFE through second order. Although these
results were derived only for a nonrotating black hole,
they should hold for any spherical, compact body with
slow internal dynamics. For nonspherical bodies, they

will be modified by higher multipole moments: hð2ÞR�� and

hð2ÞS�� will be straightforwardly altered by the body’s spin

[20], and að2Þ� will include well-known [22,30,31] cou-
plings of the moments to the external curvature.
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