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We provide a new quantum algorithm that efficiently determines the quality of a least-squares fit over

an exponentially large data set by building upon an algorithm for solving systems of linear equations

efficiently [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)]. In many cases, our algorithm can also

efficiently find a concise function that approximates the data to be fitted and bound the approximation

error. In cases where the input data are pure quantum states, the algorithm can be used to provide an

efficient parametric estimation of the quantum state and therefore can be applied as an alternative to full

quantum-state tomography given a fault tolerant quantum computer.
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Invented as early as 1794 by Carl Friedrich Gauss, fitting
data to theoretical models has become over the centuries one
of the most important tools in all of quantitative science [1].
Typically, a theoretical model depends on a number of
parameters, and leads to functional relations between data
that will depend on those parameters. Fitting a large amount
of experimental data to the functional relations allows one
to obtain reliable estimates of the parameters. If the amount
of data becomes very large, fitting can become very costly.
Examples include inversion problems of x-ray or neutron
scattering data for structure analysis, or high-energy physics
with gigabytes of data produced per second at the LHC.
Typically, structure analysis starts from a first guess of the
structure, and then iteratively tries to improve the fit to the
experimental data by testing variations of the structure. It is
therefore often desirable to test many different models, and
compare the best possible fits they provide before commit-
ting to one for which one extracts then the parameters from
the fit. Obtaining a good fit with a relatively small number of
parameters compared to the amount of data can be consid-
ered a form of data compression. Indeed, also for numeri-
cally calculated data, such as many-body wave-functions
in molecular engineering, efficient fitting of the wave-
functions to simpler models would be highly desirable.

With the rise of quantum information theory, one might
wonder if a quantum algorithm can be found that solves
these problems efficiently. The discovery that exploiting
quantum mechanical effects might lead to enhanced com-
putational power compared to classical information process-
ing has triggered large-scale research aimed at finding
quantum algorithms which are more efficient than the best
classical counterparts [2–7]. Although fault-tolerant quan-
tum computation remains out of reach at present, quantum
simulation is already now on the verge of providing answers
to questions concerning the states of complex systems that

are beyond classical computability [8,9]. Recently, a quan-
tum algorithm (called HHL in the following) was introduced
that efficiently solves a linear equation, Fx ¼ b, with given
vector b of dimension N and sparse Hermitian matrix F
[10]. ‘‘Efficient solution’’ means that the expectation value
hxjMjxi of an arbitrary poly-size Hermitian operatorM can
be found in roughlyOðs4�2 logðNÞ=�Þ steps [11], where� is
the condition number of F, i.e., the ratio between the largest
and smallest eigenvalue of F, s denotes the sparsenes
(i.e., the maximum number of nonzero matrix elements of
F in any given row or column), and � is the maximum
allowed distance between the jxi found by the computer and
the exact solution. In contrast, they show that it is unlikely
that classical computers can efficiently solve similar prob-
lems because it would imply that quantum computers are no
more powerful than classical computers.
While it has remained unclear so far whether expectation

values of the form hxjMjxi provide answers to computa-
tionally important questions, we provide here an adaption of
the algorithm to the problem of data fitting that allows one to
efficiently obtain the quality of a fit without having to learn
the fit-parameters. Our algorithm is particularly useful for
fitting data efficiently computed by a quantum computer or
quantum simulator, especially if an evolution can be effi-
ciently simulated but no known method exists to efficiently
learn the resultant state. For example, our algorithm could
be used to efficiently find a concise matrix–product state
approximation to a ground state yielded by a quantum
many–body simulator and assess the approximation error.
More complicated states can be used in the fit if the quantum
computer can efficiently prepare them. Fitting quantum
states to a set of known functions is an interesting alternative
to performing full quantum-state tomography [13].
Least-squares fitting.—The goal in least-squares fitting is

to find a simple continuous function that well approximates
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a discrete set ofN points fxi; yig. The function is constrained
to be linear in the fit parameters � 2 CM, but it can be
nonlinear in x. For simplicity we consider x 2 C, but the
generalization to higher dimensional x is straightforward.
Our fit function is then of the form

fðx;�Þ :¼ XM

j¼1

fjðxÞ�j

where �j is a component of � and fðx;�Þ: CMþ1 � C.
The optimal fit parameters can be found by minimizing

E ¼ XN

i¼1

jfðxi;�Þ � yij2 ¼ jF�� yj2 (1)

over all �, where we have defined the N �M matrix F
through Fij ¼ fjðxiÞ, Ft is its transpose, and y denotes the

column vector ðy1; . . . ; yNÞt. Also, following HHL, we as-
sume without loss of generality that 1

�2 �kFyF k� 1 and
1
�2 �kFFyk� 1 [10]. Throughout this Letter we use k� k to
denote the spectral norm.

Given that FyF is invertible, the fit parameters that give
the least square error are found by applying the Moore-
Penrose pseudoinverse [14] of F, Fþ, to y:

� ¼ Fþy ¼ ðFyFÞ�1Fyy: (2)

A proof that (2) gives an optimal � for a least-squares fit is
given in the supplemental material [15].

The algorithm consists of three subroutines: a quantum
algorithm for performing the pseudoinverse, an algorithm
for estimating the fit quality and an algorithm for learning
the fit parameters �.

1. Fitting algorithm.—Our algorithm uses a quantum
computer and oracles that output quantum states that
encode the matrix elements of F to approximately prepare
Fþy. The matrix multiplications, and inversions, are im-
plemented using an improved version of the HHL algo-
rithm [10] that utilizes recent developments in quantum
simulation algorithms.

Input:—A quantum state jyi ¼ P
MþN
p¼Mþ1 ypjpi=jyj that

stores the data y, an upper bound (denoted �) for the square
roots of the condition numbers of FFy and FyF, the
sparseness of F (denoted s) and an error tolerance �.

Output:—A quantum state j�i that is approximately
proportional to the optimal fit parameters �=j�j up to error
� as measured by the Euclidean norm.

Computational model:—We have a universal quantum
computer equipped with oracles that, when queried about a
non–zero matrix element in a given row, yield a quantum
state that encodes a requested bit of a binary encoding the
column number or value of a nonzero matrix element of F
in a manner similar to those in [16]. We also assume a
quantum black box is provided that yields copies of the
input state jyi on demand.

Query complexity:—The number of oracle queries used is

~Oð logðNÞðs3�6Þ=�Þ; (3)

where ~O notation implies an upper bound on the scaling
of a function, suppressing all subpolynomial functions.
Alternatively, the simulation method of [17,18] can be used
to achieve a query complexity of

~OðlogðNÞðs�6Þ=�2Þ: (4)

Analysis of algorithm.—The operators F and Fy are
implemented using an isometry superoperator I to represent
them as Hermitian operators onCNþM. The isometry has the
following action on a matrix X:

I: X �
0 X

Xy 0

 !
: (5)

These choices are convenient because IðFyÞjyi contains
Fyy=jyj in its firstM entries. We also assume for simplicity
that jIðFyÞjyij ¼ 1. This can easily be relaxed by dividing
IðFyÞjyi by jFyyj.
PreparingIðFyÞjyi.—The next step is to prepare the state

IðFyÞjyi. This is not straightforward because IðFyÞ is a
Hermitian, rather than unitary, operator. We implement the
Hermitian operator using the same phase estimation trick
that HHL use to enact the inverse of a Hermitian operator,
but instead of dividing by the eigenvalues of each eigenstate
we multiply each eigenstate by its eigenvalue. We describe
the relevant steps below. For more details, see [10].
The algorithm first prepares an ancilla state for a large

integer T that is of order N

j�0i ¼
ffiffiffiffi
2

T

s
XT�1

�¼0

sin

�
�ð�þ 1=2Þ

T

�
j�i � jyi: (6)

It then maps j�0i to
ffiffiffiffi
2

T

s
XT�1

�¼0

sin

�
�ð�þ 1=2Þ

T

�
j�i � e�iIðFyÞ�t0=Tjyi; (7)

for t0 2 Oð�=�Þ. We know from work on quantum simu-
lation that expð� iIðFyÞ�t0=TÞ can be implemented

within error Oð�Þ in the 2-norm using ~Oð logðNÞs3t0=TÞ
quantum operations, if F has sparseness s [19].
Alternatively, the method of [17,18] gives query complex-

ity ~Oð logðNÞs�t0=ð�TÞÞ. If we write jyi ¼ P
N
j¼1 �jj�ji,

where j�ji are the eigenvectors of IðFyÞ with eigenvalue

Ej we obtain

ffiffiffiffi
2

T

s
XT�1

�¼0

sin

�
�ð�þ 1=2Þ

T

�
e�iEj�t0=Tj�i � �jj�ji: (8)

The quantum Fourier transform is then applied to the first
register and, after labeling the Fourier coefficients �kjj, the
state becomes
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XN

j¼1

XT�1

k¼0

�kjj�jjkij�ji: (9)

HHL show that the Fourier coefficients are small unless
the eigenvalue Ej � ~Ek :¼ 2�k=t0, and t0 2 Oð�=�Þ is

needed to ensure that the error from approximating the
eigenvalue is at most �. It can be seen using the analysis in
[10] that after relabeling jki as j ~Eki, and taking T 2 OðNÞ,
(9) is exponentially close to

P
N
j¼1 �jj ~Ejij�ji.

The final step is to introduce an ancilla system and
perform a controlled unitary on it that rotates the ancilla

state from j0i to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2 ~E2

j

q
j0i þ C ~Ejj1i, where C 2

OðmaxjjEjjÞ�1 because the state would not be properly

normalized if C were larger. The probability of measuring
the ancilla to be 1 isOð1=�2Þ since CEj is at leastOð1=�Þ.
Oð�2Þ repetitions are therefore needed to guarantee suc-
cess with high probability, and amplitude amplification can
be used to reduce the number of repetitions to Oð�Þ [10].
HHL show that eitherOð1=�2Þ orOð1=�Þ attempts are also
needed to successfully perform IðFÞ�1 depending on
whether amplitude amplification is used.

The cost of implementing IðFyÞ is the product of the
cost of simulating IðFyÞ for time �=� and the number of
repetitions required to obtain a successful result, which
scales as Oð�Þ. The improved simulation method of
Childs and Kothari [19] allows the simulation to be per-

formed in time ~Oð logðNÞs3�=�Þ, where s is the sparseness
of F; therefore, IðFyÞjyi can be prepared using
~Oð logðNÞs3�2=�Þ oracle calls. The cost of performing
the inversion using the simulation method of [17,18] is

found by substituting s ! s1=3=� into this or any of our
subsequent results.

InvertingFyF.—We then finish the algorithm by applying
ðFyFÞ�1 using the method of HHL [10]. Note that the
existence of ðFyFÞ�1 is implied by a well-defined fitting-
problem, in the sense that a zero eigenvalue of FyF would
result in a degenerate direction of the quadratic form (1).
The operator FyF 2 CM�M is Hermitian and hence ame-
nable to the linear systems algorithm. We do, however, need
to extend the domain of the operator to make it compatible
with jyi which is in a Hilbert space of dimension N þM.
We introduce A to denote the corresponding operator,

A :¼ FyF 0

0 FFy

 !
¼ IðFÞ2: (10)

If we define j�i 2 CNþM to be a state of the form j�i ¼P
M
j¼1 �jjji up to a normalizing constant, then FyF� is

proportional to Aj�i up to a normalizing constant. This
means that we can find a vector that is proportional to the
least-squares fit parameters by inversion via

j�i ¼ A�1IðFyÞjyi: (11)

This can be further simplified by noting that

A�1 ¼ IðFÞ�2: (12)

Amplitude amplification does not decrease the number
of attempts needed to implement A�1 in (11) because
the algorithm require reflections about IðFyÞjyi, which
requires Oð�Þ repetitions to prepare.
Since amplitude amplification provides no benefit for

implementing A�1,Oð�5Þ repetitions are needed to imple-
ment A�1IðFyÞ. This is a consequence of the fact that
the probability of successfully performing each IðFÞ�1

is Oð1=�2Þ and the probability of performing IðFyÞ is
Oð1=�Þ (if amplitude amplification is used). The cost of
performing the simulations involved in each attempt is
~Oð logðNÞs3�=�Þ and hence the required number of oracle
calls scales as

~Oð logðNÞðs3�6=�ÞÞ: (13)

Although the algorithm yields j�i efficiently, it may be
exponentially expensive to learn j�i via tomography;
however, we show below that a quantum computer can assess
the quality of the fit efficiently.
2. Estimating fit quality.—We will now show that we

can efficiently estimate the fit quality E even if M is
exponentially large and without having to determine the
fit-parameters. For this problem, note that due to the
isometry (5) E ¼ jjyi � IðFÞj�ij2. We assume the prior
computational model. We are also provided a desired error
tolerance, �, and wish to determine the quality of the fit
within error 	.
Input:—A constant 	 > 0 and all inputs required by

algorithm 1.
Output:—An estimate of jhyjIðFÞj�ij2 accurate within

error 	.
Query complexity:—

~O
�
logðNÞ s

3�4

�	2

�
: (14)

Algorithm.—We begin by preparing the state jyi � jyi
using the provided state preparation black box.We then use
the prior algorithm to construct the state

I ðFÞA�1IðFyÞjyi � jyi ¼ IðFÞ�1IðFyÞjyi � jyi; (15)

within error Oð�Þ. The cost of implementing IðFÞ�1IðFyÞ
(with high probability) within error � is

~O
�
logðNÞ s

3�4

�

�
: (16)

The swap test [20] is then used to determine the accu-
racy of the fit. The swap test is a method that can be used to
distinguish jyi and IðFÞj�i by performing a swap opera-
tion on the two quantum states controlled by a qubit in

the state ðj0i þ j1iÞ= ffiffiffi
2

p
. The Hadamard operation is then

applied to the control qubit and the control qubit is then
measured in the computational basis. The test concludes
that the states are different if the outcome is ‘‘1’’.
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The probability of observing an outcome of 1 is
ð1� jhyjIðFÞj�ij2Þ=2 for our problem.

The overlap between the two quantum states can be
learned by statistically sampling the outcomes from many
instances of the swap test. The value of jhyjIðFÞj�ij2 can be
approximated using the sample mean of this distribution. It
follows from estimates of the standard deviation of the mean
that Oð1=	2Þ samples are required to estimate the mean
within error Oð	Þ. The cost of algorithm 2 is then found
by multiplying (16) by 1=	2.

The quantity E can be estimated from the output of
algorithm 2 by E � 2ð1� jhyjIðFÞj�ijÞ. Taylor series
analysis shows that the error in the upper bound for E is
also Oð	Þ.

There are several important limitations to this technique.
First, if F is not sparse (meaning s 2 OðpolyðNÞÞ) then the
algorithm may not be efficient because the quantum simu-
lation step used in the algorithm may not be efficient. As
noted in previous results [16–18], we can generalize our
results to systems where F is nonsparse if there exists a

set of efficient unitary transformationsUj such that IðFÞ ¼P
jUjHjU

y
j where each Hj is sparse and Hermitian. Also,

in many important cases (such as fitting to experimental
data) it may not be possible to prepare the initial state jyi
efficiently. For this reason, our algorithm is better suited
for approximating the output of quantum devices than the
classical outputs of experiments. Finally, algorithm 2 only
provides an efficient estimate of the fit quality and does not
provide �; however, we can use it to determine whether a
quantum state has a concise representation within a family
of states. If algorithm 2 can be used to find such a repre-
sentation, then the parameters j�i can be learned via state
tomography. We discuss this approach below.

3. Learning�.—This method can also be used to find a
concise fit function that approximates y. Specifically, we
use statistical sampling and quantum-state tomography to
find a concise representation for the quantum state using
M0 parameters. The resulting algorithm is efficient if
M0 2 OðpolylogðNÞÞ.

Input:—As algorithm 2, but in addition with an integer
M0 2 OðpolylogðMÞÞ that gives the maximum number of
fit functions allowed in the fit.

Output:—A classical bit string approximating j�i to
precision �, a list of the M0 fit functions that comprise
j�i and jhyjIðFÞj�ij2 calculated to precision 	.

Computational model:—As algorithm 1, but the oracles
can be controlled to either fit the state to allM fit functions
or any subset consisting of M0 fit functions.

Query complexity:—

~O
�
logðNÞs3

�
�4

�	2
þM02�6

�3

��
:

Algorithm.—The first step of the algorithm is to prepare
the state j�i using algorithm 1. The state is then measured
OðM0Þ times and a histogram of the measurement

outcomes is constructed. Since the probability of measur-
ing each of these outcomes is proportional to their rele-
vance to the fit, we are likely to find M0 of the most likely
outcomes by sampling the state OðM0Þ times.
After choosing the M0 most significant fit functions, we

remove all other fit functions from the fit and prepare the
state j�i using the reduced set of fit functions. Compressed
sensing [21–23] is then used to reconstruct j�iwithinOð�Þ
error. The idea of compressed sensing is that a low-rank
density matrix can be uniquely determined (with high
probability) by a small number of randomly chosen mea-
surements. A convex optimization routine is then used to
reconstruct the density matrix from the expectation values
found for each of the measurements.
Compressed sensing requires OðM0 logðM0Þ2Þ measure-

ment settings to reconstruct pure states, and observation 1
of [21] implies that OðM0=�2Þ measurements are needed
for each setting to ensure that the reconstruction error is
Oð�Þ; therefore, OðM02 logðM0Þ2=�2Þ measurements are
needed to approximate the state within error Oð�Þ. The
total cost of learning j�i is the number of measurements
needed for tomography multiplied by the cost of preparing
the state and thus scales as

~O
�
logðNÞ s

3M02�6

�3

�
; (17)

which subsumes the cost of measuring j�i to find the most
significant M0 fit functions.
Finally, we measure the quality of the fit using algorithm

2. The total cost of estimating j�i and the fit quality is thus
the sum of (17) and (16), as claimed.
Remark.—The quality of the resulting fit that is yielded

by this algorithm depends strongly on the set of fit functions
that are used. If the fit functions are chosen well, fewer than
M0 fit functions are used to estimate jyi with high fidelity.
Conversely,OðNÞ fit functions may be needed to achieve the
desired error tolerance if the fit functions are chosen poorly.
Fortunately, the efficiency of algorithm 2 allows the user to
search many sets of possible fit functions for a concise and
accurate model within a large set of potential models.
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