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The last decade has witnessed substantial interest in protocols for transferring information on networks

of quantum mechanical objects. A variety of control methods and network topologies have been proposed,

on the basis that transfer with perfect fidelity—i.e., deterministic and without information loss—is

impossible through unmodulated spin chains with more than a few particles. Solving the original problem

formulated by Bose [Phys. Rev. Lett. 91, 207901 (2003)], we determine the exact number of qubits in

unmodulated chains (with an XY Hamiltonian) that permit transfer with a fidelity arbitrarily close to 1,

a phenomenon called pretty good state transfer. We prove that this happens if and only if the number

of nodes is n ¼ p� 1, 2p� 1, where p is a prime, or n ¼ 2m � 1. The result highlights the potential

of quantum spin system dynamics for reinterpreting questions about the arithmetic structure of integers

and, in this case, primality.
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Introduction.—Since the pioneering work by Bose [1],
quantum channels implemented by spin systems have been
interpreted as wires for the transmission of possibly un-
known qubit states. Motivated by the perspective of design-
ing quantum buses and nanodevices, a vigorous effort has
delineated the field of quantum spin systems engineering
[2]. In this context, one of the desirable tasks is to transfer
the state of a particle into another one with maximum
fidelity; when the fidelity is 1, we have perfect state trans-
fer (PST), a notion originally introduced in [3]. Given an
inherent difficulty in the manipulation of coherent quantum
mechanical objects, the most appealing set up for state
transfer employs a time-independent Hamiltonian and no
interaction with the system except at initialization and
readout. If we do not use ad hoc coupling schemes and
control protocols (see [4]; also the recent [5] and the
references therein), a spin chain (1D magnet) with a
Heisenberg XY Hamiltonian exhibits PST only between
2 and 3 qubits [3]. This is a negative result because such a
chain is arguably the quantum wire obtainable with the
smallest amount of physical and technological resources.

On the basis of sufficient conditions for PST, this fact
fueled a mathematically challenging classification pro-
gram aimed to identify PST in general network topologies
[6]. The k-dimensional hypercube (with n ¼ 2k qubits)
has the best known performance in terms of the distance
travelled by a single excitation: PST occurs between anti-
podal nodes at (network) distance k. However, for practical
purposes, it is natural to study whether a minimalist struc-
ture like the chain (with n qubits) can still be usefully
employed. In particular, even if we already know that there
is no PST for n � 4 we may still ask the following

question: given n and an " > 0, does there exist t such
that the fidelity at time t between qubits 1 and n is larger
than 1� "? When the answer is ‘‘yes’’, we say that there is
pretty good state transfer (PGST). While Bose [1] verified
that the fidelity could be remarkably high even for rather
long chains, the notion of PGST was formally isolated in
[7] as a relaxation of PST. We give, in the present Letter, a
complete characterization of the parameters for which
there is PGST. Our findings can be combined into the
following simple-sounding statement:
Theorem.—A uniformly coupled chain of n particles

with XY Hamiltonian has PGST if and only if n ¼ p� 1
or 2p� 1, where p is a prime, or if n ¼ 2m � 1.
The significance of the result is twofold. From the physi-

cal point of view, it is valuable that we rigorously describe a
phenomenon with applications to the study of quantum
nanodevices [8]. In fact, the related observations obtained
up to now are either numerical or fragmented. The message
conveyed by the notion of PGST is that an unknown qubit
state can be transferred with arbitrarily large fidelity be-
tween the end nodes of ‘‘long’’ chains whenever thewaiting
time is not an issue. From the mathematical point of view,
we highlight properties of quantum interference as a con-
sequence of number-theoretic constraints. The appearance
of prime numbers in the theorem indicates a connection
between the occurrence of PGST in chains of a given length
and primality testing. This suggests a potential application
of quantum dynamics on graphs for reinterpreting number-
theoretic problems when the problem description is en-
coded in the parameters of the system.
It is well established that the dynamics of a single

excitation in networks of spins with unmodulated
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couplings is a continuous-time quantum walk on the
unweighted graph modeling the network. Hence, our result
can also be reinterpreted in the language of continuous-
time quantum walks: it describes the maximum hitting
probability between antipodal vertices induced by a one-
dimensional quantum walk. Walks of this type have been
studied in great detail [9]. This analogy prompts us to
disregard the original spin system setup and to work with
a single n-level system. The realization and simulation of
this quantum device is the center of several discussions
[10]. It is remarkable that at a wider level, state transfer can
be seen as the simplest model in a family of processes for
quantum transport, for example, the population transfer of
n-level systems [11], after including the role of the envi-
ronment, the transport of energy in organic molecules [12],
and a closely related mathematical setting describes state
transfer in chains of harmonic oscillators coupled with
beam-splitter interactions [13]. Finally, the experimental
implementation of the Heisenberg XY chain has been
proposed in schemes including cold-atom optical lattices
and superconducting circuits [14].

PGST.—The Hamiltonian governing the evolution of the
system acts on the Hilbert space H ffi C2

1 � � � � � C2
n.

If we do not include external static potentials, the
Hamiltonian is

Ĥ ¼ 1

2

Xn�1

u¼1

Juð�x
u�

x
uþ1 þ �y

u�
y
uþ1Þ;

where �w
u (w 2 fx; y; zg) is a Pauli matrix on C2

u, and Ju is
the coupling strength between the particles u and uþ 1.
By virtue of the Jordan-Wigner transform [15], the free
evolution for a time t of a single excitation originally
located at site jui 2 fj1i; . . . ; jnig is given by eiHtjui ¼
UðtÞjui, where Hu;v ¼ Ju if v ¼ uþ 1 or u ¼ vþ 1, and
Hu;v ¼ 0, otherwise. The n� n real symmetric matrixH is

the Hamiltonian restricted to the single excitation sector.
PST occurs between 1 and n if there is a t 2 Rþ such that
jhnjUðtÞj1ij ¼ 1; i.e., the channel has maximum fidelity;
PGST occurs between 1 and n if for every � > 0 there
is t 2 Rþ such that jhnjUðtÞj1ij> 1� �. Analytical solu-
tions for coupling design able to achieve PST for any
n have been presented in previous works (see [5]).
Abstractly, a chain of length n is modeled by a network
called an n path and denoted by Pn. The links representing
the particle-particle interactions are f1; 2g; f2; 3g; . . . ;
fn� 1; ng. When the chosen couplings are uniform
(without loss of generality, Ju ¼ 1), the Hamiltonian H is
the adjacency matrix of the n path. (Recall that the adja-
cency matrix of a graph has ijth entry 1 if there is a link
between the nodes i and j; 0, otherwise.) We know from [7]
that there is PGST in P4 and P5.

We shall first prove the theorem. Next, we present
some details about the cases when there is no PGST.
In particular, we will give an explicit upper bound on
the fidelity in a special case. In Appendix C of the

Supplemental Material [24], we discuss PGST between
internal nodes by considering a link between state transfer
and control theory on networks (see [16]).
Proof of the theorem.—The proof of the theorem is based

on a direct linear-algebraic analysis of the eigensystem of
UðtÞ and on the application of standard number-theoretic
tools, especially Kronecker’s theorem on Diophantine ap-
proximation. We begin by considering a general property
of PGSTand basic facts about bipartite graphs.We then use
relations on the eigenvalues with a detailed case-by-case
treatment.
For any two vertices u and v of a graph,

UðtÞjui � �jvi ¼ �UðtÞð��1jui �Uð�tÞjviÞ;
here, ��1I�Uð�tÞ is the Hermitian adjoint of ��1I�UðtÞ.
Since UðtÞ is unitary and k�k ¼ 1, we see that

kUðtÞjui � �jvik ¼ kUðtÞjvi � �juik:
So, if we have PGST from u tov, we also have it from v to u.
A graph X is bipartite if there is a bipartition of the set of

nodes such that the links connect only nodes in different
parts. Suppose X is bipartite, and letD be a diagonal matrix
such that Du;u is 1 or �1, accordingly u is in one or the

other part of the bipartition. Then DAD ¼ �A, and if
UðtÞjui � �jvi,

�Djvi � DUðtÞDDjui ¼ Uð�tÞDjui:
But, jui and jvi are eigenvectors for D with eigenvalues 1
or �1; the eigenvalues are equal if and only if u and v are
in the same part. So there is a sign factor �u;v and �jvi �
�u;vUð�tÞjui. Accordingly, UðtÞjvi � ��1�u;vjui.
By the above, UðtÞjvi � �jvi, and we conclude that

� � ��1�u;v. Hence, � � �1 if u and v are in the same

part, and � � �i if they are not. (For PST this observation
is due to Kay [2].) Let F denote the permutation matrix
of order n� n such that Fjri ¼ jnþ 1� ri for all r. Let
E1; . . . ; En be the idempotents in the spectral decomposi-
tion of the path Pn (i.e., of its adjacency matrix). We can
then write F ¼ P

n
r¼1ð�1Þr�1Er. If we have PGST at time

t, then UðtÞ � �F and, therefore,

1 ¼ detUðtÞ � �n detðFÞ ¼ �nð�1Þbn=2c:
This yields three cases: (1) ifn 	 1mod4 then ð�1Þbn=2c ¼ 1

and � � 1; (2) if n 	 3 mod 4 then ð�1Þbn=2c ¼ �1 and

� � �1; (3) if n is even then in ¼ ð�1Þn=2 and � � �i.
It is well known that the eigenvalues �r of Pn are given by
�r ¼ 2 cos½�r=ðnþ 1Þ
.
We start with the positive results. If PGST occurs, then

UðtÞ gets arbitrarily close to �F. This means that ei�rt�
ð�1Þr�1� for r¼1; . . . ;n. Set m ¼ bn=2c. Assume � ¼ �1
if n is odd and �i if n is even.
First, we prove that for the path Pn, if e

i�rt � ð�1Þr�1�
for r ¼ 1; . . . ; m, then ei�rt � ð�1Þr�1� for all r¼1;...;n,
and, hence, UðtÞ � �F. To see this, assume ei�rt�
ð�1Þr�1�. Since n paths are bipartite, �nþ1�r¼�r, and,
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therefore, ei�nþ1�rt ¼ e�i�rt � ð�1Þr�1��1. For PGST,
we need ð�1Þn�r� ¼ ð�1Þr�1��1 or, equivalently,
�2 ¼ ð�1Þn�1. As this holds for our choice of �, we are
done. Since �r ¼ 2 cos½�r=ðnþ 1Þ
, we have that �r is a
polynomial with rational coefficients of degree r in �1. We
also set �0 ¼ 2. It follows that the numbers �0; . . . ; �d
are linearly independent over Q if and only if the degree
of the algebraic integer �1 is greater than d.

This provides us with the necessary tools to prove the
first part of the theorem: if n ¼ p� 1 or 2p� 1, where p
is prime, or if n ¼ 2m � 1, then we have PGST on Pn. If
� 2 C, we use use Qð�Þ to denote the field obtained
by adjoining � to Q. If F is a subfield of Qð�Þ, then
Qð�Þ is a vector space over F; its dimension is the index
of F in Qð�Þ. (For details see, e.g., [17], Chap. 5.) Let

� ¼ 2 cos½�=ðnþ 1Þ
 and set � ¼ ei�=ðnþ1Þ. Then � 2
Qð�Þ, and � is a root of the quadratic x2 � x�þ 1. So
the index of Qð�Þ in Qð�Þ is at most two. If n � 3 though,
� is real, and � is not. Thus, the index is exactly two. The
degree of � is �ð2nþ 2Þ, where � is Euler’s function, and
therefore, the degree of � is �ð2nþ 2Þ=2. If n ¼ p� 1,
2p� 1, or2m � 1, wherep is a prime,we have, respectively,

�ð2nþ 2Þ ¼ �ð2pÞ ¼ �ðpÞ ¼ p� 1;

�ð2nþ 2Þ=2 ¼ �ð4pÞ=2 ¼ �ðpÞ ¼ p� 1;

�½2ðnþ 1Þ
=2 ¼ 2m�1:

Finally, in each of these three cases the positive eigenvalues
ofPn are linearly independent overQ. Next, let 	 equal 0, 12 ,
1
4 , or

3
4 , accordingly � equals 1,�1, i, and�i, respectively.

For each r ¼ 1; . . . ; m, let �r ¼ 1
2 if r is even and �r ¼ 0 if

r is odd. ByKronecker’s theorem (see [18]), for any �, T > 0
there is a t� > T and integers pr; r ¼ 1; . . . ; m, such

that jt� �r
2 � pr � �r � 	j< �. It follows that as � ! 0,

ei�t��r ! ð�1Þr�1�, with r ¼ 1; . . . ; n, so that we have
PGST. Let us now focus on the negative cases: if
n ¼ mp� 1, where p is odd and m � 3, then PGST does
not occur on Pn. Suppose nþ 1 ¼ mp, where p is odd.
After some algebra (see Appendix A of the Supplemental
Material [24]), we obtain the following equation concerned
with the eigenvalues:

ð�1 � �2Þ þ
Xp�1=2

r¼1

ð�1Þrð�mrþ1 � �mrþ2Þ

þ Xp�1=2

r¼1

ð�1Þrð�mr�1 � �mr�2Þ ¼ 0:

Denote the three terms on the left by D, E, and F,
respectively. If we have PGST, then there is a sequence
of times ðtkÞk�0 such that ei�rtk ! ð�1Þr�1�, and so

eið�s��sþ1Þtk!�1. Therefore, eiDtk ! �1, while eiEtk and

eiEtk both tend to 1 or to�1. Thus, eiðDþEþFÞtk ! �1, which
is impossible since Dþ Eþ F ¼ 0. It is not difficult to
verify that the cases considered above include all integers.

This ends the proof of the theorem. A corollary is that if
2 � n � 10, we have always PGST, except in the case
n ¼ 8.
Fig. 1 gives the smallest times needed to achieve a

relatively large fidelity (> 0:99 and, thus, � ¼ 0:01) for
chains of length 2 � n � 7. The parameters to be consid-
ered for numerics are n and �. Indeed, the waiting time
depends also on the tolerance " being close to one. The log
plot suggests that for a fixed " there is a behavior that is
linear in n.
It is a corollary of the theorem that there is PGST on Pn

if and only if its positive eigenvalues are linearly indepen-
dent over the rationals. A proof of some cases when there
is PGST can be constructed with the use of facts about
linear independence of roots of unity discussed by Conway
and Jones (in particular Theorems 1 and 7) and by Watkins
and Zeitlin [19]. The crucial observation for PGST is
indeed the linear independence (over the rationals) of
the numbers cos½ð�j=ðnþ 1Þ
 for certain choices of j.
Bounding fidelity.—We have seen that there are many

cases in which there is no PGST for Pn. We outline now a
general technique for proving upper bounds on the fidelity
whenever this happens. Algebraic graph theory is again the
natural toolbox to employ. The spectral decomposition of
the adjacency matrix of a graph X is A ¼ P

r�rEr. Two
vertices u and v of X are cospectral if, for each r, the
projections Erjui and Erjvi have the same length. We say
they are strongly cospectral if, for each r, we have Erjui ¼
�Erjvi. In [7], it is shown that if we have PGST (or PST)
from u to v, then u and v are strongly cospectral. If the
eigenvalues of A are simple, two vertices are strongly
cospectral if and only if they are cospectral. Assume
UðtÞu;v ¼ P

rðErÞu;vei�rt. Define �r by the requirement

that ðErÞu;v ¼ �rðErÞu;u. [For paths, �r ¼ ð�1Þr�1.] Then

UðtÞu;v is a convex combination of the norm one complex

numbers �re
it�r . For PGST to occur, these numbers must

all be approximately equal. We can see this by applying the
triangle inequality,

2 3 4 5 6 7

2

4

6

8

FIG. 1 (color online). Logarithm of the earliest points in
which the fidelity is strictly greater than 0.99 for 2 � n � 7.
The numbers have been obtained by plotting jUðtÞ1;nj
(n ¼ 2; . . . ; 7) and then by analyzing sections of the curves.
Clearly 0.99 is an arbitrary choice. Notice the jumps between
the pairs (2, 3), (4, 5), (6, 7). Because PGST depends on the
positive eigenvalues of Pn, this phenomenon may be explained
by the fact that bn=2c ¼ bðnþ 1Þ=2c for n even.
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jUðtÞu;vj �
X

r

jðErÞu;vj ¼
X

r

jðErÞu;uj ¼ 1:

In particular, PGST cannot happen if there is some set S of
eigenvalue indices such that

X

r2S

ðErÞu;u �
��������
X

r2S

ðErÞu;vei�rt
��������

is bounded away from zero (for all t). With a direct analysis
of this expression, we can rule out PGST explicitly when
n ¼ 3kþ 2 and k is even. (The details are in Appendix B
of the Supplemental Material [24].) We leave open the
challenge of finding explicit bounds on the fidelity in the
remaining cases. The proof technique outlined here can be
potentially extended to other network topologies.

Conclusions.—By solving an open problem about quan-
tum transport [1], we have highlighted number-theoretic
properties of quantum communication in spin chains. We
have studied general properties of PGST. We have given
necessary and sufficient mathematical conditions for
PGST to occur on XY spin chains with uniform couplings.

The physical intuition paralleling the mathematical
result suggests that the spin wave can reach the end of
the chain with an arbitrary high peak only when the num-
ber of particles does not permit significant constructive
interference. In this case, the trajectory of the amplitude
(in a fixed time interval) suggests an intriguing analogy
with chaotic dynamics that remains to be explored.

Deciding whether there is PGST is computationally
equivalent to primality testing, a task that is performed
efficiently with the Agrawal-Kayal-Saxena test [20].
Experimental detection of PGST would correspond to a
natural algorithm for primality. Its complexity would be
determined via bounds on the time required by physical
evolution (or its simulation) and on resources for tomog-
raphy and sequential measurements.

We have outlined a technique for quantifying maximum
fidelity when there is no PGST. Some cases remain with no
complete answer. We have shown how notions of network
control theory can be applied to study communication in
spin systems. Exploring PGST in general networks beyond
the n path requires similar methods, but it is a challenging
task. It is valuable to observe that we have considered a
system without spatial disorder; its behavior does not
exhibit effects due to Anderson localization. Numerics in
[21] indicated that the fidelity of this system tends to be
robust when a relatively small amount of disorder is intro-
duced in the couplings. On the other side, it was shown in
[22] that the speed of propagation of coherent walks is
suppressed exponentially in the amount of imperfection.

We have left open the development of a comprehensive
theory of PGST. Such a theory is important to obtain a
fuller understanding of transport in networks of quantum
mechanical particles, either engineered or found in nature.
Experimental tests based on photonic waveguides are

currently investigated. (See [23] for background on such
schemes.)
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