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We study the glued-trees problem from A.M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D.

Spielman, in Proceedings of the 35th Annual ACM Symposium on Theory of Computing (ACM, San

Diego, CA, 2003), p. 59. in the adiabatic model of quantum computing and provide an annealing schedule

to solve an oracular problem exponentially faster than classically possible. The Hamiltonians involved in

the quantum annealing do not suffer from the so-called sign problem. Unlike the typical scenario, our

schedule is efficient even though the minimum energy gap of the Hamiltonians is exponentially small

in the problem size. We discuss generalizations based on initial-state randomization to avoid some

slowdowns in adiabatic quantum computing due to small gaps.
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Quantum annealing is a powerful heuristic to solve
problems in optimization [1,2]. In quantum computing,
the method consists of preparing a low-energy or ground
state jc i of a quantum system such that, after a simple
measurement, the optimal solution is obtained with large
probability. jc i is prepared by following a particular an-
nealing schedule, with a parametrized Hamiltonian path
subject to initial and final conditions. A ground state of the
initial Hamiltonian is then transformed to jc i by varying
the parameter slowly. In contrast to more general quantum
adiabatic state transformations, the Hamiltonians along the
path in quantum annealing are termed stoquastic and do
not suffer from the so-called numerical sign problem [3]:
for a specified basis, the off-diagonal Hamiltonian-matrix
entries are nonpositive [4]. This property is useful for
classical simulations [2].

A sufficient condition for convergence of the quantum
method is given by the quantum adiabatic approximation.
It asserts that, if the rate of change of the Hamiltonian
scales with the energy gap � between their two lowest-
energy states, jc i can be prepared with controlled accu-
racy [5,6]. Such an approximation may also be necessary
[7]. However, it could result in undesired overheads if � is
small but transitions between the lowest-energy states are
forbidden due to selection rules, or if transitions between
lowest-energy states can be exploited to prepare jc i. The
latter case corresponds to the annealing schedule in this
Letter. It turns out that the relevant energy gap for the
adiabatic approximation in these cases is not � and can be
much bigger.

Because of the properties of the Hamiltonians, the an-
nealing can also be simulated using probabilistic classical
methods such as quantum Monte Carlo (QMC) calcula-
tions [8]. The goal of QMC calculations is to sample
according to the distribution of the ground state, i.e., with
probabilities coming from amplitudes squared. While we
lack of necessary conditions that guarantee convergence,

the power of QMC calculations is widely recognized
[2,8,9]. In fact, if the Hamiltonians satisfy an additional
frustration-free property, efficient QMC simulations for
quantum annealing exist [10,11]. An important open ques-
tion is whether a quantum-computer simulation of general
quantum-annealing processes can ever be done using
substantially less resources than QMC or other classical
simulation.
In this Letter, we answer this question in the affirmative:

We provide an oracular problem and give a simple and
natural quantum-annealing schedule that, on a quantum
computer, prepares a quantum state jc i encoding the
solution. The time required to prepare jc i is polynomial
in the problem size, herein polyðnÞ. The oracular problem
was first introduced in Ref. [12] in the context of quantum
walks, where it was also shown that no classical method
can give the solution using polyðnÞ number of oracle calls.
Thus, our result places a limit on the power of classical
methods that simulate quantum evolutions.
We do not answer the general question of existence of

efficient classical simulations when � is 1=polyðnÞ. The
annealing schedule we provide is not intended to follow the
ground state in the path; diabatic transitions to the closest
(first excited) eigenstate are allowed. Nevertheless, the
system (almost) remains in the subspace spanned by these
two states at all times. There are regions in the path where
� / expð�nÞ. We induce transitions in that subspace by
choosing an annealing rate that is much larger than �, i.e.,
at 1=polyðnÞ rates. Contrary to the typical case, such tran-
sitions are useful here. They guarantee the preparation
of jc i due to a symmetry argument: The same type of
transition that transforms the ground into the first-excited
state, later transforms the first-excited state into the final
ground state jc i. The extent of this argument goes beyond
the problem considered in this Letter and may be used as
an alternative for those problems in which the quantum
adiabatic algorithm fails due to small gaps.
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In more detail, the oracular problem from Ref. [12] is as
follows. We are given an oracle that consists of the adja-
cency matrix A of two binary trees that are randomly glued
(by a random cycle) as in Fig. 1. There are N 2 Oð2nÞ
vertices named with randomly chosen 2n-bit strings. The
oracle outputs the names of the adjacent vertices on any
given input vertex name. There are two special vertices,
ENTRANCE and EXIT—the roots of the binary trees.
They can be identified because they are the only vertices
of degree two in the graph. The glued-trees problem is:
Given an oracle A for the graph and the name of the
ENTRANCE, find the name of the EXIT. An efficient
method based on quantum walks can solve this problem
with constant probability, while no classical algorithm that
uses less than a subexponential (in n) number of oracles
exists [12]. Still, a quantum-annealing method that uses
simple and stoquastic Hamiltonians remains unknown. We
will then present a quantum-annealing approach that effi-
ciently outputs the name of the EXIT with arbitrarily high
probability, cf. [6,13].

We assume a Hamiltonian version of the oracle so
that evolutions under A can be implemented. We also
allow for evolutions under H0 and H1, these being the
diagonal Hamiltonians that distinguish the ENTRANCE
and EXIT, respectively. Such evolutions can be realized
efficiently [14], i.e., using OðTÞ oracles for evolution
time T > 0. We let aðVÞ 2 f0; 1g2n be the name of vertex
V. Then, H0ja0i ¼ ��aðENTRANCEÞ;a0 ja0i and H1ja0i ¼
��aðEXITÞ;a0 ja0i, so that their ground states encode

aðENTRANCEÞ and aðEXITÞ, respectively. The
Hamiltonian path for the annealing will consist of a spe-
cific interpolation involving H0, A, and H1.

The (orthonormal) states

jcolji ¼ 1ffiffiffiffiffiffi
Nj

p X
i2jthcolumn

jaðiÞi (1)

will be useful [12]. These are uniform-superposition states
over all states labeled by the names of vertices at the jth
column. Nj ¼ 2j for 0 � j � n and Nj ¼ 22nþ1�j for

nþ 1 � j � 2nþ 1; see Fig. 1. In particular, jcol0i ¼
jaðENTRANCEÞi and jcol2nþ1i ¼ jaðEXITÞi. The sub-
space spanned by fjcoljig0�j�2nþ1 is then invariant under

the action of A, H0, and H1. In the basis determined by
Eq. (1), A has nonzero matrix elements in its first off-

diagonals only. For simplicity, we redefine A ffiffiffi
2
p

A so
that the matrix elements are

hcoljjAjcoljþ1i ¼
( ffiffiffi

2
p

j ¼ n

1 otherwise:
(2)

Also, hcoljjH0jcolji¼��j;0 and hcoljjH1jcolji¼��j;2nþ1.
We choose the Hamiltonian path

HðsÞ ¼ ð1� sÞ�H0 � sð1� sÞAþ s�H1 (3)

that interpolates between H0 and H1 for 0 � s � 1. The
parameter� is independent of n and satisfies 0<�< 1=2.
HðsÞ corresponds to a perturbed tight-binding model
in physics. We will show that annealing at a rate
_sðtÞ / 1=polyðnÞ, the resulting evolution transforms
jaðENTRANCEÞi to a state that has arbitrarily high overlap
with jaðEXITÞi.
Spectral properties.—We use the spectral properties of

HðsÞ to prove the efficiency of the quantum method; par-
ticularly relevant are the spectral gaps. The following
analysis is valid if we restrict to the invariant subspace
spanned by fjcoljigj. Figure 2 shows the three lowest

eigenvalues of HðsÞ, obtained numerically, in this sub-
space. This suggests a particular eigenvalue behavior.

0.2 0.4 0.6 0.8 1.0

0.5

0.4

0.3

0.2

0.1

FIG. 2 (color online). The three lowest eigenvalues of HðsÞ in
the subspace fjcolijgj, for � ¼ 1=

ffiffiffi
8
p

and n ¼ 10. �jk¼�j��k

is the gap between the jth and kth eigenstates, respectively. We
divide the evolution in five stages according to s1, s2, s3, and s4
[see text after Eq. (5)], with s1 < s� ¼ �=

ffiffiffi
2
p ¼ 0:25< s2 and

s3¼1�s2<1�s�<s4¼1�s1. Inside [s1, s2] and [s3, s4], the
gap �10 becomes exponentially small in n. Elsewhere, �10

is only polynomially small in n. The small (brown) arrows 1!
2 and 3! 4 depict level transitions for an annealing rate in
which _sðtÞ / 1=polyðnÞ.

FIG. 1 (color online). Two binary trees of depth n ¼ 4 glued
randomly. The number of vertices is N ¼ 2nþ2 � 2. Each vertex
is labeled with a randomly chosen 2n-bit string. j is the column
number.
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We can analytically study the Hamiltonians by proposing
the ansatz j�i ¼ P

j�jjcolji, with
�j ¼ aeipj þ be�ipj; 0 � j � n;

�j ¼ ceipð2nþ1�jÞ þ de�ipð2nþ1�jÞ;

nþ 1 � j � 2nþ 1;

(4)

and p 2 C. The eigenvalue conditions Hj�i ¼ �j�i and
h�j�i ¼ 1 allow us to find expressions for a, b, c, d, and �.
The resulting eigenvalue is � ¼ �2sð1� sÞ cosp. We pro-
vide a detailed analysis of the spectrum in Supplemental
Material [15] and present only the relevant results here.
Because of the s$ ð1� sÞ symmetry, it suffices to ana-
lyze the parameter region s 2 ½0; 1=2�.

In the following, x�� y if jx� yj � � and � � 0. When
n! 1, the two lowest eigenvalues cross, or become equal,

at s ¼ s� ¼ �=
ffiffiffi
2
p

. Different eigenvalue behavior is
obtained at both sides of s�. For n <1 and 0 � s � s�,
the spectral gap between the two lowest eigenvalues is

�10ðsÞ ¼ �1ðsÞ � �0ðsÞ

�
�
�ð1� sÞ

�
3sffiffiffi
2
p � �2 þ s2

�

�
; (5)

with � 2 Oð2�n=2Þ. The eigenvalue crossing is avoided for
n <1 and �10ðsÞ is exponentially small in n near s�. This
finite-size gap behavior is typical for avoided crossings in
which eigenstates rapidly change as a function of s.
In addition, Eq. (5) gives �10ðsÞ � c=n3 for 0 � s � s1 ¼
s� � � and s2 ¼ s� þ � � s � 1=2, with � 2 �ð1=n3Þ.

The second-excited state has an eigenvalue that
corresponds to p�� 	=ðnþ 1Þ, with � 2 Oð1=ðnþ 1Þ2Þ.
These eigenvalues reflect the relationship between HðsÞ
and the tight-binding model. The spectral gap between the
first- and second-excited state for 0 � s � � is then

�21ðsÞ¼�2ðsÞ��1ðsÞ �
�=2þ�

�sð1�sÞ
�
cos

�
	

nþ1

�
� 3ffiffiffi

2
p

�
:

(6)

In particular, �21ðsÞ 2 �ð1Þ in the region s1 � s � �.
For � � s � 1=2, the second eigenvalue also corre-

sponds to p�� 	=ðnþ 1Þ. To bound the gap with the third
eigenvalue, a more detailed analysis that approximates p at
order 1=ðnþ 1Þ2 is carried out in the Supplemental
Material [15]. It results in �21ðsÞ � c0=n3, for some
c0 > 0 (see Fig. 2).

Annealing schedules.—We use the following adiabatic
approximation from Ref. [5]: Let the initial state be an
eigenstate of Hðs0Þ and �ðsÞ the spectral gap to the nearest
(nondegenerate) eigenstate in some region s0 � s � sf.

Then, an annealing rate of _sðtÞ / "�2ðsÞ or smaller suffices
to prepare the eigenstate of HðsfÞ at error amplitude

smaller than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"ðsf � s0Þ

q
; i.e., the overlap between the

evolved state and the eigenstate is at least

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "ðsf � s0Þ

q
. (Better error scaling is possible [6,13].)

We assume that 0< "� 1, and that " is an arbitrary and
small constant independent of n.
To prove that _sðtÞ / "=n6 suffices to solve the glued-

trees problem with low error, we split the evolution accord-
ing to ½0; 1� ¼ S

5
i¼1 Vi, with V1 ¼ ½0; s1Þ, V2 ¼ ½s1; s2Þ,

V3 ¼ ½s2; s3Þ, V4 ¼ ½s3; s4Þ, and V5 ¼ ½s4; 1�. The values
of si were determined previously; see Fig. 2. We denote
j�0ðsÞi and j�1ðsÞi the instantaneous ground and first-
excited states, respectively. j�0ð0Þi ¼ jaðENTRANCEÞi
and j�0ð1Þi ¼ jaðEXITÞi encodes the solution. j�0ðsÞi is
different for different values of s. Then, due to the gap
bounds and the adiabatic approximation, the following
transformations occur:

j�0ð0Þi !ffiffiffiffiffiffi
"s1
p j�0ðs1Þi; j�1ðs2Þi !ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

"ðs3�s2Þ
p j�1ðs3Þi;

j�0ðs4Þi !ffiffiffiffiffiffiffiffiffiffiffiffiffi
"ð1�s4Þ
p j�0ð1Þi;

(7)

where !x indicates that the transformation occurred at
error amplitude of order x.
Because �21ðsÞ 2 �ð1Þ for s 2 V2, transformations be-

tween the ground or first-excited state and the second-
excited state occur with amplitude smaller than

ffiffiffi
"
p

.
Thus, all relevant transitions in V2 occur in the manifold
spanned by fj�0ðsÞi; j�1ðsÞig. For our annealing rate, the
following diabatic transformations occur with low error
amplitude (see below):

j�0ðs1Þi ! j�1ðs2Þi; j�1ðs3Þi ! j�0ðs4Þi: (8)

To show that the approximation errors for Eq. (8) are
small, we introduce the state jui—the uniform superposi-
tion over all vertex names:

jui ¼ 1ffiffiffiffi
N
p X

i2graph
jaðiÞi ¼ X2nþ1

j¼0

ffiffiffiffiffiffi
Nj

N

s
jcolji: (9)

Here, Nj ¼ 2j for 0 � j � n and Nj ¼ 22nþ1�j for nþ
1 � j � 2nþ 1. Interestingly, jui is almost an eigenstate

for all s: HðsÞjui��=2�ðsð1� sÞ3= ffiffiffi
2
p Þjui and

� 2 Oð2�n=2Þ—see Supplemental Material [15]. We de-
fine fðtÞ ¼ jhujUðtÞjuij2, where UðtÞ is the evolution
operator and fð0Þ ¼ 1. Schrödinger’s equation yields
_fðtÞ ¼ �ihujHðsðtÞÞUðtÞjui hujUyðtÞjui þ c:c:�� 0. If
T 2 Oðn3="Þ is the time needed to change s from s1 to
s2 with our annealing schedule [while js2 � s1j 2
�ð1=n3Þ], we have fðTÞ��0 1 for �0 2 Oð2�n=2n3="Þ.
In addition, jhuj�1ðs1Þij��0 1 and jhuj�0ðs2Þij��0 1—see
Supplemental Material [15]. This results in
jh�1ðs1ÞjUðTÞj�0ðs2Þij2�5�0 1.
The transformation j�1ðs1Þi! ffiffiffiffiffi

5�0
p j�0ðs2Þi then occurs.

Moreover, because UðtÞ is unitary, we also have
j�0ðs1Þi! ffiffiffiffiffi

5�0
p j�1ðs2Þi and, from symmetry arguments,

j�1ðs3Þi! ffiffiffiffiffi
5�0
p j�0ðs4Þi. These transitions of levels are
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shown in Fig. 2. Together with Eq. (7), they prove the
success of our quantum-annealing method. When

2�n=2n3 � "2, we have �0 � " and the overall error am-
plitude is dominated by that of the adiabatic approximation
in this case. This error is of order

ffiffiffi
"
p � 1.

In Fig. 3 we show the overlaps between UðtÞj�0ð0Þi and
the instantaneous ground and first-excited states, respec-
tively, for our choice of _sðtÞ. It provides evidence for the
diabatic transition among the two low-energy levels.

Initial-state randomization—A generalization.—In the
glued-trees problem, all the interesting quantum dynamics
occurred in the manifold given by the ground and first-
excited states only. For more general problems, however,
the relevant manifold may contain more eigenstates (e.g.,
due to initial ground state degeneracy). In this section, we
build a randomization method that allow us to prepare the
final ground state in these problems, with large probability,
provided that some assumptions are met.

To this end, we consider again the glued-trees problem
and the region s 2 ½
; 1� 
�. Here, 
 2 Oð1=n3Þ and
�21ðsÞ � c0=n3 for all s in the region—see Fig. 2. Then, if
we randomly prepare j�0ð
Þi or j�1ð
Þi and anneal using
the schedule _sðtÞ / "=n6, the highly excited levels are
effectively decoupled from the evolution. It implies that,
when s ¼ 1� 
, the evolved state is (almost) the uniform
combination of j�0ð1� 
Þi and j�1ð1� 
Þi. Because 
 is
small for large n, and since j�1ð
Þi � jui, the method also
works if the initial state is sampled randomly from
fjaðENTRANCEÞi; juig. Such state preparation can be
done efficiently. An advantage is that a full analysis of the
low-energy spectrum is not needed to prove the success of
the randomization method (at the expense of reducing the
error probability on the state preparation to 1=2).

The randomization method can be generalized as fol-
lows. It is well known that efficient quantum adiabatic
transport within k � 2 eigenstates is possible if these

eigenstates are at gaps 1=polyðnÞ from the rest [5,6].
Then, if uniform sampling from the k initial eigenstates
can be done efficiently, any of the final k eigenstates can be
prepared efficiently with probability of order 1=k. If k is
not too big, the method works regardless of whether the k
lowest eigenvalues have small gaps or cross.
General Hamiltonians will not satisfy the requirements

on the gaps, but some physical models do. An example is
the one-dimensional spin-1=2 Ising model in a transverse
field. As the Ising coupling J is changed from 0 to J� 1,
the two lowest eigenvalues have a spectral gap that de-
creases exponentially with the system size n. However, the
third eigenvalue is always at a distance 1=polyðnÞ from the
two lowest ones. This property is common for systems that
undergo through a critical point and break a discrete sym-
metry. At the critical point, the eigenvalues satisfy a dis-
persion relation EðqÞ / qz, where z is the dynamical
exponent and q is the momentum. The values of q differ
by multiples of 2	=n so that the gaps are 1=polyðnÞ in that
point. At the phase with broken symmetry, only a few low
eigenvalues are separated at constant gaps from the rest—
see [16] for more details.
Discussion.—We provided an oracular problem that can

be solved efficiently by quantum annealing whereas ex-
ponential time is required for any classical method. We
described why our algorithm works even when the gaps are
exponentially small and showed a generalization of the
method based on initial-state randomization. While results
on efficient adiabatic quantum simulations of quantum
circuits could also be used to prove an exponential quan-
tum speedup in this case [17], the resulting Hamiltonians
are rather complex and not stoquastic. The construction in
Ref. [17] assumes a polynomially small gap; whether this
assumption is necessary or not in general needs to be
analyzed on a case by case basis.
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