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In this Letter, we demonstrate that the property of monogamy of Bell violations seen for no-signaling

correlations in composite systems can be generalized to the monogamy of contextuality in single systems

obeying the Gleason property of no disturbance. We show how one can construct monogamies for

contextual inequalities by using the graph-theoretic technique of vertex decomposition of a graph

representing a set of measurements into subgraphs of suitable independence numbers that themselves

admit a joint probability distribution. After establishing that all the subgraphs that are chordal graphs

admit a joint probability distribution, we formulate a precise graph-theoretic condition that gives rise to

the monogamy of contextuality. We also show how such monogamies arise within quantum theory for a

single four-dimensional system and interpret violation of these relations in terms of a violation of

causality. These monogamies can be tested with current experimental techniques.
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Introduction.—The essence of the classical description of
nature is the assumption that the physical world exists inde-
pendently of any observers, and that the act of observation
does not disturb it. This feature, called realism, was first
brought to mainstream physics by Einstein, Podolsky, and
Rosen in [1]. A mathematical consequence of realism is that
there exists a joint probability distribution for the outcomes
ofmeasurements for all physical properties of the system [2].
It was shown by Bell [3] and by Kochen and Specker [4] that
the property of realism is not present in quantum theory.
Therefore, it is reasonable to treat realism as a hallmark of
classicality and the lack of it as an indicator of quantumness.
Clauser et al. [5] and Klyachko et al. [6] proposed minimal
experimental tests of this feature by means of the Clauser-
Horne-Shimony-Holt inequality and the Klyachko-Can-
Binicoglu-Shumovsky (KCBS) inequality, respectively.
These inequalities must be satisfied in any theory that incor-
porates realism, and their violations have been observed
experimentally [7,8], confirming that nature is not compat-
ible with realism.

Although Bell inequalities are studied as indicators
of ‘‘local realism’’ and KCBS inequalities are treated as
indicators of ‘‘noncontextuality,’’ they have the same root,
namely, the assumption of realism. Local realism is a
special kind of realism where the additional constraint of
locality is imposed, namely, that measurements in spatially
separated systems do not influence each other. Bell in-
equalities thus require at least two correlated and spatially
separated subsystems. The notion of noncontextuality, on
the other hand, applies to a single system, and stipulates
that the outcomes of any measurement are independent of
any other measurement that can be jointly performed with
it. Violation of the KCBS inequality implies that the sys-
tem does not admit a noncontextual description for these

measurements. Contextual inequalities being applicable to
single systems are arguably more fundamental than Bell
inequalities in studying the quantumness of physical
systems.
Quantum correlations as captured by the violation of Bell

inequalities have been shown to obey the interesting prop-
erty of monogamy [9]; if Alice is able to violate a Bell
inequality with Bob, she is unable to violate the same Bell
inequality with Charlie. This property arises only under
certain conditions: namely, (i) Alice uses the same settings
to violate Bell inequalities with both Bob and Charlie;
(ii) No communication between Alice, Bob, and Charlie is
allowed; (iii) Bob and Charlie cannot use more than two
measurement settings; (iv) Alice tries to violate the very
same Bell inequality with both Bob and Charlie. Bell mo-
nogamies are useful in secure quantum key distribution [10],
interactive proof systems [11], and in the emergence of a
local realistic description for correlations in the macroscopic
domain [12].
The fact that the origin of Bell inequalities and contextual

inequalities is the existence of joint probability distributions
suggests that a similar monogamy relation may hold for
contextual inequalities as well. Bell monogamy arises as a
consequence of the no-signaling principle, which states that
the probabilities of outcomes of measurement in one sub-
system are independent of the choice of measurement in a
spatially separated subsystem. An interesting question is
how the properties of no signaling and monogamy translate
to contextual inequalities.
In this Letter, we focus on KCBS-type contextual inequal-

ities and show that there is a form of monogamy of
their violations analogous to the monogamy of Bell inequal-
ity violations. We exploit the Gleason principle of no dis-
turbance that is a generalization of the principle of no
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signaling. The paper is organized as follows. We first for-
mulate mathematically the principle of no disturbance. We
then derive a monogamy relation for the simplest contextual
inequality, namely, the KCBS inequality for five measure-
ments, and show that it applies to any theory that obeys the
principle of no disturbance, in particular quantum mechan-
ics. Using techniques of graph theory, we show how these
monogamies can be generalized to any contextual and Bell
inequalities. In particular, we establish a proposition that any
chordal graph representing a set of measurements admits a
joint probability distribution and use this to identify the
necessary and sufficient condition for a set of measurements
to exhibit the monogamy of contextuality.

Principle of no disturbance.—To formulate the principle
of no disturbance mathematically, let us consider a physical
system on which one can perform several different mea-
surements A, B, C, etc. Let us assume that measurements
A and B can be jointly performed as can measurements
A andC. This implies the existence of the joint probabilities
pðA ¼ a; B ¼ bÞ and pðA ¼ a; C ¼ cÞ (where the small
letters denote outcomes of the corresponding measure-
ments). The principle of no disturbance is then the condition
that the marginal probability pðA ¼ aÞ calculated from
pðA ¼ a; B ¼ bÞ is the same as that calculated from
pðA ¼ a; C ¼ cÞ; i.e.,
X

b

pðA ¼ a; B ¼ bÞ ¼ X

c

pðA ¼ a;C ¼ cÞ ¼ pðA ¼ aÞ:

(1)

This property has been referred to as the Gleason property
in [13], since it is the condition underlying Gleason’s theo-
rem. Note that when measurements B and C are performed
on spatially separated systems, the principle of no distur-
bance reduces to that of no signaling. From here on we use
pðA ¼ a; B ¼ bÞ and pða; bÞ interchangeably wherever
there is no possibility of confusion.

Monogamy of KCBS-type inequalities.—We concentrate
first on the KCBS inequality from [6] that was introduced
to test the quantumness of a single (three-level) system and
construct a monogamy relation for it. Similar monogamies
hold for any inequalities of this kind [14]. The KCBS
inequality reads

X5

i¼1

pðAi ¼ 1Þ � 2; (2)

where Ai represents the measurements with outcomes
ai ¼ 0, 1. These measurements are cyclically compatible
[i.e., it is possible to experimentally determine pðai; aiþ1Þ
(where one identifies a6 with a1)] and exclusive (i.e.,
aiaiþ1 ¼ 0). Measurements Ai�1 and Aiþ1 are said to
provide two different contexts for the measurement Ai.
These measurements can be represented by the ‘‘commuta-
tion graph’’ corresponding to a pentagon where the vertices
of the pentagon graph represent the five measurements and
the edges between any two vertices indicate that the two
corresponding measurements can be jointly performed and

are mutually exclusive. The bound of 2 is derived under the
assumption of existence of the joint probability distribution
pða1; a2; . . . ; a5Þ. In graph theoretic terms, this bound cor-
responds to the independence number of the pentagon
graph, which is the maximum number of mutually discon-
nected vertices in the graph. This inequality is violated in
any contextual theory such as quantum theory where such a
joint probability distribution does not exist. The KCBS
inequality Eq. (2) is the necessary and sufficient condition
for the existence of noncontextual description for these five
measurements. Analogous inequalities can be constructed
for a larger number of measurements as well [13,14].
We can now precisely state the definition of contextual

monogamy as follows. A set of measurements is said to
have ‘‘monogamous contextuality’’ if it can be partitioned
into disjoint subsets, each of which can by themselves
reveal contextuality, but which cannot all simultaneously
be contextual. Let us derive a monogamy relation for the
KCBS contextual inequality from the no-disturbance prin-
ciple, along similar lines to the monogamy of Bell inequal-
ity violations derived from the no-signaling principle [9].
Consider two sets of cyclically compatible and exclusive
measurements fAig and fA0

ig. Each set gives rise to a KCBS
inequality Eq. (2). Let us assume that the triple A1, A

0
1, A

0
2

are jointly measurable and mutually exclusive, as is also
the triple A4, A5, A

0
5. This scenario is represented by the

commutation graph in Fig. 1. Therefore, in addition to
pðai; aiþ1Þ and pða0i; a0iþ1Þ, one can experimentally deter-
mine probabilities pða1; a01; a02Þ and pða05; a4; a5Þ. This con-
dition is similar to that imposed in the derivation of Bell
monogamies, namely, that a common observer chooses the
same settings for the violation of Bell inequalities with all
other observers.
We introduce the no-disturbance principle (1) by setting

pðA1 ¼ 1Þ ¼ p and pðA0
5 ¼ 1Þ ¼ q. Mutual exclusiveness

implies that pðA0
1¼1ÞþpðA0

2¼1Þ�1�p and pðA4¼1Þþ
pðA5¼1Þ�1�q in addition to pðAi¼1ÞþpðAiþ1¼1Þ�1
and pðA0

i ¼ 1Þ þ pðA0
iþ1 ¼ 1Þ � 1. However, this already

implies
P

5
i¼1 pðAi ¼ 1Þ � 2� qþ p and

P
5
i¼1pðA0

i¼1Þ�
2�pþq and therefore the monogamy relation

FIG. 1 (color online). Graphical representation of two KCBS
inequalities that satisfies the monogamy relation.

PRL 109, 050404 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

3 AUGUST 2012

050404-2



X5

i¼1

pðAi ¼ 1Þ þX5

i¼1

pðA0
i ¼ 1Þ � 4 (3)

holds. Therefore, only one KCBS inequality out of the two
sets fAig and fA0

ig can be violated in all theories that obey the
no-disturbance principle such as quantum mechanics.

If, however, the principle of no disturbance does not
hold, it is possible to violate both inequalities simulta-
neously. This is because in this case pða1Þ calculated
from pða1; a01; a02Þ would yield a different value than that
calculated from pða1; a5Þ or pða1; a2Þ (similarly for A0

5).

The consequence of this would be that causality is violated,
as can be seen from the following argument. In order to
evaluate probabilities, joint measurements do not have to
be performed simultaneously, they can as well be per-
formed in sequential order. The fact that pða1Þ depends
on whether A1 was measured with A0

1, A
0
2 or with A2 or A5

can be used to signal backward in time. The marginal
probabilities pða1Þ calculated from pða1; a01; a02Þ being
inconsistent with the probability pða1Þ measured earlier
(in a joint measurement of A1 and A2, for instance) would
imply an influence propagating backward in time, thus
violating causality [15]. The no-signaling principle being
a special instance of the no-disturbance principle, violation
of no-signaling monogamies for Bell inequalities would
imply the possibility of superluminal communication be-
tween spatially separated systems, which could also lead to
a violation of causality. In the Supplemental Material [16],
we help clarify the analogous relationship between the
monogamy of contextual inequalities derived here and
the monogamy of Bell inequalities (which are special
instances of contextual inequalities) by deriving the mo-
nogamy of Clauser-Horne-Shimony-Holt inequalities us-
ing the commutation graph technique introduced above.

Having illustrated the method for deriving monogamy
relations for contextual (and Bell) inequalities, we now
proceed to formulate it using some graph-theoretic notions.
To do so, we first state Proposition 1, whose proof is
provided in the Supplemental Material [16].

Proposition 1.—A commutation graph G representing a
set of nmeasurements (for any n) admits a joint probability
distribution for these measurements if it is a chordal graph.

A chordal graph is a graph that does not contain an
induced cycle of length greater than 3; i.e., each of the
cycles of four or more vertices in the graph must have a
chord, an edge connecting two nonadjacent vertices in the
cycle. This class of graphs comprises a large class of all
graphs of n vertices, and Proposition 1 excludes the con-
struction of contextual inequalities (or Kochen-Specker
proofs) from all such graphs.

We can now precisely formulate the method for the
derivation of monogamy relations introduced previously.
Given a commutation graph representing a set of n con-
textual inequalities, look for its vertex decomposition
into m chordal subgraphs (each of which admits a joint

probability distribution by Proposition 1), such that the
sum of the independence numbers of these subgraphs is
n � R, where R is the noncontextual bound for each of the
inequalities. If the n contextual inequalities are not all the
same, i.e., if n1 inequalities have noncontextual bound
R1 and n2 inequalities have bound R2 etc., then the sub-
graphs should be chosen such that the sum of their
independence numbers is

P
knkRk. All vertices of the

commutation graph are to be included in the vertex decom-
position into subgraphs with no vertex appearing in more
than one subgraph, but the edges between the different
subgraphs can be neglected. Note that while many con-
textual inequalities involve rank-1 projectors, where the
edges of the graph denote mutual exclusiveness in addition
to compatibility, this assumption is not crucial to the
derivation of monogamies. This can be seen from the
derivation of the Bell inequality monogamies, where only
compatibility is required.
Using the method presented above, one can identify

several commutation graphs that yield contextual monog-
amy (including Bell monogamy) relations; for instance, the
monogamy relation Eq. (3) also holds for the graphs in
Figs. 2(a) and 2(b), as can be seen by the decompositions
given there. We see that monogamy relations for two
KCBS inequalities can be derived for various measurement
configurations, the measurement configuration given in
Fig. 1 being the minimal one (with fewest edges connect-
ing two contextual graphs) in which such monogamies
appear for two sets of five separate measurements. This
minimality can be seen by finding that for all graphs with
one, two, and three edges connecting two distinct pentagon
graphs, no vertex decomposition into two or more chordal
subgraphs with total independence number 4 exists. Since
the KCBS inequality Eq. (2) is a necessary and sufficient
condition for the existence of noncontextual description for
the five measurements, the relation Eq. (3) holds for any
contextual inequality of this kind as well [14]. The method
can also be used to construct monogamy relations for
inequalities with more than five measurements along
similar lines. In general, it can be seen that the larger the
number of mutually exclusive and jointly performable
measurements, the stronger the monogamy relation is.

FIG. 2 (color online). Measurement configurations (top) and
their decompositions (bottom) for which monogamy relations
can be derived.
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We now proceed to explicitly identify the commutation
graphs that give rise to monogamy relations for a given set
of n KCBS-type contextual inequalities (with noncontextual
bound R). This is done in Proposition 2, which provides the
necessary and sufficient condition for a commutation graph
to give rise to a monogamy relation using the method
outlined above; its proof is provided in the Supplemental
Material [16].

Proposition 2.—Consider a commutation graph repre-
senting a set of n KCBS-type contextual inequalities, each
of which has noncontextual bound R. Then this graph gives
rise to a monogamy relation using the outlined method if
and only if its vertex clique cover number is n � R.

The vertex clique cover number is the minimal number
of cliques required to cover all the vertices of the graph.
The above proposition can be extended to the scenario
where one is interested in the monogamy of sets of differ-
ent contextual inequalities, for instance, when nk of the
inequalities have noncontextual bound Rk, with

P
knk ¼ n.

Then the condition becomes that the vertex clique cover
number equals

P
knkRk. This gives a very powerful method

of identifying whether a given graph exhibits contextual
monogamy.

The monogamy relations presented so far are genuine
properties of contextual theories in the sense that, for
classical (noncontextual) theories, each of the inequalities
can achieve its maximum value within the classical theory.
We note, however, that certain monogamies also hold for
noncontextual theories; for instance, for the situation when
all measurements in set fAig are compatible and mutually
exclusive with all the measurements in set fA0

ig. Here,

the mutual exclusiveness guarantees the monogamyP5
i¼1pðAi¼1ÞþP5

i¼1pðA0
i¼1Þ�5=2 in all theories obey-

ing the no-disturbance principle. However, an important
feature here is that monogamies also arise within noncontex-
tual theories for which the relation

P
5
i¼1 pðAi ¼ 1ÞþP5

i¼1 pðA0
i ¼ 1Þ � 2 holds, and this can be traced to the

large number of mutually exclusive measurements required
here. The interesting monogamies are those in which such
classical restrictions do not appear, such as those in Figs. 1
and 2.

Let us now show how the monogamy relation Eq. (3)
applies within quantum theory. First, note that the mea-
surements for the optimal violation of KCBS inequality
for a single three-level quantum system are rank-1 projec-
tors spanning real three-dimensional space. Consider a
real four-dimensional space in which the set of projectors
fAig spans dimensions 1, 2, and 3 and the set of projectors
fA0

ig spans dimensions 2, 3, and 4. These projectors can

be constructed to obey the constraints of mutual
exclusiveness and joint measurability as required by the
commutation graphs. A set of projectors that correspond
to the measurement configuration in Fig. 2(b) for a
quantum mechanical system of dimension four is
given by

jA1i ¼ ð1; 0; 0; 0ÞT; jA2i ¼ ð0; 1; 0; 0ÞT;
jA3i ¼ ðcos�; 0; sin�; 0ÞT;
jA4i ¼ ðsin� sin�; cos�;� sin� cos�; 0ÞT;
jA5i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2�þ sin2�cos2�
p ð0; sin� cos�; cos�; 0ÞT;

and

jA0
1i ¼ ð0; 0; 0; 1ÞT; jA0

2i ¼ ð0; cos�; sin�; 0ÞT;
jA0

3i ¼ ð0; sin� sin�;� sin� cos�; cos�ÞT;
jA0

4i ¼ ð0; sin� sin";� sin� cos"; cos�ÞT;
jA0

5i ¼
1

sin�
ð0; sin� cos"; sin� sin"; 0ÞT;

where we impose the conditions sinð�� "Þ � 0,
cosð�� "Þ � 0, and tan� tan� cosð�� "Þ ¼ �1. This is
analogous to the situation where one requires three qubits
(dimension 8), which is the minimal system in order to
have monogamy of Bell inequality violations. Since
quantum theory obeys the principle of no disturbance,
the monogamy inequality Eq. (3) is guaranteed to hold for
these projectors. However, quantum mechanics incorpo-
rates other properties as well, such as the complementar-
ity principle [17]. For the monogamy relations of Bell
inequalities, the exact trade-offs between multiple in-
equalities within quantum theory have been derived
[17,18] using the principle of complementarity. An im-
portant open problem is to derive the exact trade-offs for
contextual inequalities within quantum theory.
Discussion and conclusions.—Violation of a single

contextual inequality Eq. (2) for a three-level system has
been experimentally tested using a single photon [8]. The
monogamy of contextuality presented here can be realized
for a four-level system with feasible modifications to the
existing experimental setup, and using projectors accord-
ing to the commutation graphs presented in the figures
above. This would establish the monogamy of contextual-
ity as a distinct phenomenon from the monogamy of
entanglement, since the notion of entanglement is not
clearly applicable to a single quantum system.
In this Letter we have demonstrated that the property of

monogamy so far seen for quantumcorrelations in composite
entangled systems also carries over to single quantum
systems. In particular, we have shown that one can construct
monogamy relations for contextual inequalities of the KCBS
type using the principle of no disturbance. Violation of these
monogamy relations is seen to be related to a violation of
causality analogous to the necessity of signaling between
spatially separated systems for the violation of Bell monog-
amy relations. The fact that Bell inequalities and contextual
inequalities arise from the same origin, namely, the assump-
tion of realism, leads one to believe that the features seen in
the Bell scenario should carry over to the contextual scenario
as well. In this regard, it would be interesting to investigate
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how other features such as distillation, activation of non-
locality, and no-signaling boxes (or Popescu-Rohrlich boxes)
carry over to the contextual scenario [13].
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Ramelow, M. Wieśniak, and A. Zeilinger, Nature
(London) 474, 490 (2011).
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