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We introduce an order parameter for symmetry-protected phases in one dimension which allows us to

directly identify those phases. The order parameter consists of stringlike operators and swaps, but differs

from conventional string order operators in that it only depends on the symmetry but not on the state. We

verify our framework through numerical simulations for the SO(3) invariant spin-1 bilinear-biquadratic

model which exhibits a dimerized and a Haldane phase, and find that the order parameter not only works

very well for the dimerized and the Haldane phase, but it also returns a distinct signature for gapless

phases. Finally, we discuss possible ways to measure the order parameter in experiments with cold atoms.
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Symmetries play an essential role almost everywhere in
physics. A prominent example is Landau’s theory of
phases: different phases are classified by whether the state
of the system obeys or breaks the symmetries of the
Hamiltonian. In turn, this gives rise to local order parame-
ters which can be measured to determine which phase a
system is in. This picture has recently been challenged by
the discovery of topologically ordered phases: they are not
associated with the breaking of any local symmetry, and
therefore there is no local order parameter which can be
used to detect topological phases.

Topological order occurs only in two and higher dimen-
sions, since one-dimensional gapped spin systems exhibit
only a single phase. However, the situation in one dimen-
sion changes if we impose symmetries—they do not only
give rise to Landau-type phases which are distinguished by
local order parameters, but also to distinct symmetry-
protected phases which cannot be distinguished by any
local order parameter (and might thus be called topologi-
cal), yet which are protected (i.e., separated) by the pres-
ence of the symmetry. The most prominent example for a
nontrivial symmetry-protected phase is the Haldane phase,
which contains the spin-1 AKLT model and likely the
spin-1 Heisenberg model and which is, e.g., protected by
SO(3) symmetry [1]. More recently, it has been realized
that these phases differ by the way in which the symmetry
acts across blocks of the system, i.e., on the entanglement
between blocks. This can be understood in a particularly
natural way in the framework of matrix product states
(MPS), which provide the appropriate framework for the
description of gapped one-dimensional systems, and which
allow us to directly access the entanglement between
blocks [1–3]. In particular, it has been found that the action
of the symmetry on the entanglement between blocks, and

thus the different symmetry-protected phases, are distin-
guished by the inequivalent projective representations of
the symmetry group, such as integer and half-integer spin
representations in the case of the rotation group [1,2].
Symmetry-protected phases such as the spin-1 AKLT

chain do not exhibit long-range order, this is, nondecaying
correlations between distant sites, which could otherwise
replace local order parameters. However, they do exhibit
what is known as string order [4,5]: measuring a string of
identical operators with distinct end points gives correla-
tions which do not depend on the length of the string,
despite the absence of conventional long-range order.
This might suggest that string order parameters can be
used to distinguish different symmetry-protected phases.
However, the presence of string order is rather a signature
of the symmetry itself than of the phase of the system under
that symmetry, and string order parameters need to be
tailored to the system under consideration; indeed, one
can easily find examples of systems in different phases
which are susceptible to the same string order parameter,
and vice versa [6]. Therefore, string order parameters are
not well suited as order parameters for symmetry-protected
phases.
In this Letter, we propose an order parameter which

allows us to distinguish symmetry-protected phases by
directly measuring the way in which the physical symme-
try acts on the entanglement between blocks. Unlike string
order parameters, it is independent of the state under
consideration and only depends on the symmetry itself.
We demonstrate our approach for the SO(3) symmetry
by numerically studying the spin-1 bilinear–biquadratic
model (see, e.g., [7]), where we find that the order parame-
ter, though defined for asymptotically large blocks, con-
verges very well for small lengths. We also find that while
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the order parameter is designed to work for the gapped
phases of the system, namely, the trivial and the Haldane
phase, it in fact also exhibits a distinct signature for the
gapless critical and ferromagnetic phase of the model.
Finally, we discuss how one could in principle experimen-
tally implement a measurement of this order parameter, in
particular, with atoms in optical lattices.

Let us start by explaining the structure of one-
dimensional gapped phases under symmetries; for simplic-
ity, we will focus on systems with unique ground states. As
such phases differ by their long-range properties, we first
describe the structure of such states on large length scales,
and, in particular, their renormalization group (RG) fixed
points. Because of the absence of topological entanglement
in one dimension, at the RG fixed point of 1D systems each
site independently shares entanglement with its two adja-
cent sites. This is, the overall state is of the form

j�i ¼ S�Nj�i�N: (1)

Here, j�i¼P
�iji;ii is a ‘‘virtual’’ entangled state between

adjacent sites with Schmidt spectrum � ¼ ð�1; . . . ; �DÞ,
and S is an isometry mapping the virtual entangled states
into the physical system, acting jointly on the halves of two
adjacent j�i states, as depicted in Fig. 1. In the framework
of matrix product states (MPS), which are obtained by
replacing the isometry S in Fig. 1 by an arbitrary linear
map, and which form the appropriate class of states for the
description of one-dimensional gapped quantum systems
[8–10], it can be proven rigorously that any ground state of
a gapped 1D system converges exponentially to the fixed
point of Eq. (1) [11]; thus, Eq. (1) can equally well be
understood as an approximation to any gapped 1D system,
where S embeds the virtual entangled pairs into a block of
L physical sites each, with an accuracy exponential in L.
(In this case, S can be understood as the RG transformation
on a block of length L).

Now consider a quantum system with an on-site linear
symmetry ug, u

�N
g j�i ¼ j�i, where ug is a representation

of the symmetry groupG, uguh ¼ ugh. Under renormaliza-

tion, the symmetry action transforms to the actionUg on the

renormalized sites. (In particular, if blocking L sites,
Ug ¼ u�Lg .) In the representation of Eq. (1) and Fig. 1,

this symmetry can be understood as an effective symmetry

Ûg ¼ S�1UgS acting on the virtual entangled pairs. Note

that Ûg forms again a linear unitary representation of

G, as Ug commutes with SSy [3]. It can be shown

that the virtual action of the symmetry Ûg always decom-

poses as Ûg ¼ Vg � �Vg, where Vg and �Vg act on the

left and the right entangled state, respectively [6].
Moreover, � :¼ P

�ijiihij commutes with �Vg [3], so that

ð �Vg � VgÞj�i ¼ j�i.
Since Ûg ¼ Vg � �Vg, and ÛgÛh ¼ Ûgh, it follows that

Vg forms a projective representation, VgVh ¼ ei!ðg;hÞVgh.

Here, !ðg; hÞ is a 2-cocycle; i.e., it satisfies !ðg; hkÞ þ
!ðh; kÞ ¼ !ðg; hÞ þ!ðgh; kÞ mod2�. As Vg is only de-

fined up to its phase (and up to a similarity transform), we
have a gauge degree of freedom Vg $ ei�gVg which in-

duces an equivalence relation !ðg; hÞ �!ðg; hÞ þ�g þ
�h ��gh mod2� of 2-cocycles, and thus equivalence

classes of projective representations. These equivalence
classes form a group isomorphic to the second cohomology
group H2ðG;Uð1ÞÞ, and label the inequivalent projective
representations of the symmetry group G. For the rotation
group SO(3), e.g., the inequivalent projective representa-
tions are the integer and half-integer spin representations,
respectively. It turns out that the equivalence class of the
projective representation Vg, which describes the action

of the symmetry on the virtual degrees of freedom, is
exactly what labels different phases in the presence of
symmetries [2,3].
In order to detect different symmetry-protected phases,

we therefore need a measurement which allows us to
determine the equivalence class of the projective represen-
tation with which the symmetry acts on the entanglement
between blocks. However, the problem is that while we
know Ug, it is impossible to infer sufficient information

about Vg from it—to do so we would have to know the

transformation S, which would require full tomography of
the state [12]. Fortunately, we do not need detailed knowl-
edge of Vg, since we only want to know to which equiva-

lence class of projective representations it belongs. For this
purpose, it is sufficient to compute certain gauge invariant
quantities which give access to the gauge invariant univer-
sal signature of !ðg; hÞ: For instance, for SO(3) symmetry,

one such quantity is VzVxV
y
z V

y
x , where x, z 2 SOð3Þ de-

note � rotations about the x and the z axis: it is þ1 for
integer spin representations and �1 for half-integer spin
representations of SO(3), respectively, and does not depend
on the gauge. (See Supplemental Material [13], Sec. A , for
other groups.) Thus, if we were able to measure such an
invariant for a given state, we would be able to determine
the symmetry-protected phase the system is in. Different
from determining Vg itself, this invariant can be deter-

mined without any information about S, by measuring a
suitable operator such as

E ð�Þ :¼ h�jðUz �Uz � 1ÞF13ðUx �Ux � 1Þj�i; (2)

FIG. 1 (color online). Large-scale structure of 1D quantum
states. The renormalization fixed point consists of virtual en-
tangled pairs with Schmidt spectrum � between adjacent sites,
which are mapped by an isometry S onto the physical system. If
Smaps onto L sites of the original state, this ansatz approximates
any ground state of a gapped Hamiltonian to an accuracy
exponential in L.
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where F13 swaps the first and the third site. [Equivalently,
Eð�Þ ¼ h�jF13UxUyUzj�i.] If one expresses this mea-

surement diagrammatically using that Ûg ¼ Vg � �Vg,

cf. Fig. 2, it is straightforward to check that

E ð�Þ ¼ tr½VzVxV
y
z V

y
x�4� tr½�4�; (3)

and its sign thus allows us to determine the phase of j�i.
(Recall that � commutes with Vg.) Note that by omitting

theU’s in Eq. (2), one can measureN ð�Þ :¼ tr½�4�2, and
that the ratio Êð�Þ :¼ Eð�Þ=N ð�Þ ¼ �1 yields a nor-
malized quantity which distinguishes the trivial from the
Haldane phase. (See Supplemental Material [13], Sec. B,
for how to measure general gauge invariant quantities.)

The preceding discussion was concerned with renormal-
ization fixed points, i.e., states of the form Eq. (1).
However, we can evaluate the same quantity for an arbi-
trary quantum state, by replacing Ux and Uz by strings of
local symmetry operators ux and uz, i.e., Ug ¼ u�Lg . For

ground states of gapped Hamiltonians, we expect it to
converge exponentially fast to the value at the renormal-
ization fixed point; this can be proven rigorously in the
framework of matrix product states, cf. Supplemental
Material [13], Sec. C.

In order to test the applicability of the order parameter,
we have performed numerical simulations for the spin-1
bilinear-biquadratic Heisenberg chain (cf., e.g., [7] and
references therein)

Hð�Þ ¼ cos�
X

i

Si � Siþ1 þ sin�
X

i

ðSi � Siþ1Þ2: (4)

This model is SO(3) invariant and exhibits both possible
gapped phases under rotational symmetry: a dimerized
phase for �3�=4< �<��=4 (with integer spin repre-
sentations Vg and thus topologically trivial), and a Haldane

phase for ��=4< �< �=4 (with half-integer representa-
tions Vg and thus topologically nontrivial).

The simulations have been carried out using infinite
matrix product states (iMPS) [14] with sites blocked in
pairs, using the time-dependent variational principle [15].

The results for the order parameter EL as a function of �=�
are plotted in Fig. 3 for different length L (L refers to the
length of a single block in Fig. 2), and forD ¼ 32; the inset

shows the normalized ÊL. We find that EL converges
quickly, with its sign correctly distinguishing the dimer-
ized phase (þ 1) from the Haldane phase (� 1). Deviations
from this behavior can be observed at the phase transitions
around � ¼ ��=4, as well as in the dimerized phase close
to � ¼ �3�=4, a regime in which the possible existence of
a ‘‘spin-nematic phase’’ is under ongoing debate (see, e.g.,
[7]). Simulations with different D give similar results,
except that the width of the transition regions between
the phases decreases with increasing D.
A closer analysis of the data reveals that inside both

phases, EL converges exponentially with a length scale
essentially equal to the correlation length (deviation
below 2%). However, for many values of � this behavior
is only seen on intermediate length scales (typically up to
L � 30; . . . ; 40), while at larger scales, EL tends to zero.
This can be understood as follows: Finding the optimal
MPS approximation with a givenD corresponds to keeping
theD largest values in the Schmidt spectrum � of the state.
As ½�; Vg� ¼ 0, the degeneracies in the Schmidt spectrum

correspond to the irreducible representations of SO(3)
which appear in Vg. If the truncation does not respect these

degeneracies (this depends on the ordering of the irreps in
the Schmidt spectrum and thus on the point � in the phase),
the resulting iMPS will not any more be exactly SO(3)
invariant, which causes EL to converge to zero. For the
data reported in Fig. 3 with D ¼ 32, we find perfect
convergence for �=� ¼ �0:69; . . . ;�0:63 and �=� ¼
�0:22; . . . ;�0:10. In Fig. 4(a), we compare the two cases
for two adjacent points in the dimerized phase.
Beyond the dimerized and the Haldane phase, the

bilinear-biquadratic model also exhibits two gapless
phases. First, a ferromagnetic phase for �=2���5�=4

FIG. 2 (color online). Illustration of the measurement Eq. (2)
used to determine phases under SO(3) symmetry (with shorthand
Z for Vz, etc.). By following the loops created by the operator
and the entangled states, it can be easily checked that the
diagram evaluates to Eð�Þ, Eq. (3); note that operators traversed
downwards have to be transposed.
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FIG. 3 (color online). Order parameter EL for the bilinear-
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with product ground states j�i�N; there, EL ¼ ðh�juxj�i	
h�juyj�ih�juzj�iÞL converges to zero exponentially in L.

Second, there is a critical phase in the regime �=4 � � <
�=2 [7] which we have included in our simulations,
cf. Fig. 3. The results for this region should be taken with
care, as MPS perform considerably worse in describing the
ground states of critical systems, and, in particular, cannot
exactly reproduce algebraically decaying correlations.
Analyzing the behavior of the order parameter in the critical
regime, we find a dominating exponential decay due to
the fact thatD is incommensuratewith the symmetry, which
is superimposed with an oscillation due to the 2�=3 peri-
odicity of the critical phase [7], �L cosð!LÞ. The parame-
ters � and ! can be extracted from the MPS transfer
operator, and we find that after correcting for these effects,

ÊL=ð�L cosð!LÞÞ [plotted in Fig. 4(b) for � ¼ 0:47] exhib-
its an algebraic decay to zero, with an exponent which
varies between 0.41 and 0.44 in the critical phase. The
results on the exponent should be taken with particularly
great care, as they depend on the choice of data points fitted,
and the algebraic decay observed is in fact a sum of
exponentials; yet, we believe that our results provide sub-
stantial evidence for an algebraically vanishing order
parameter in the critical phase.

So far, we have shown that the order parameter Eð�Þ can
be used as a theoretical tool to determine the phases of 1D
spin chains. Now we will show that, at least in principle, it
can also be experimentally determined by performing
few measurements (without the need of carrying out a
full tomography). The main idea is to use an ancillary
particle which controls whether the unitary and swapping
operations appearing in Eq. (2) are applied or not, and then
perform a measurement on that particle. Let us assume

that the ancilla is a qubit, initially prepared in the state

ðj0i þ j1iÞ= ffiffiffi
2

p
. Then, the ancilla interacts successively

with particles in region 1 and 2, 1 and 3, and then again
1 and 2, such that if it is in state j1i, the unitary operator
appearing in Eq. (2) is applied, and otherwise just the
identity operator. At the end of the process, one measures
the Pauli operator �x on the ancilla, whose expectation
value coincides with Eð�Þ.
The techniques required to carry out the above proce-

dure are very sophisticated, and we do not expect that they
can be performed in most of the experimentally relevant
situations (beside atomic physics experiments, where indi-
vidual addressing and full control over the atomic inter-
actions may be gained in the near future [16–18]). In any
case, here we give an alternative method to detect the
phase which may be slightly simpler to implement in the
particular setup of atoms in optical lattices. The main idea
is to use two copies of the spin chain, as it is usual in that
setup (for instance, with the help of superlattices [19]).
Then, one would like to determine

Eð2Þð�Þ :¼ h�jAh�jBðF1A;1B � F3A;3BÞ
	 ðU1;A

z �U1;B
z �U2;A

x �U2;B
x Þj�iAj�iB: (5)

Here, A and B refer to the first and second copy of the
chain, and 1, 2, and 3 to three neighboring regions each
containing a sufficiently large number of spins. One can

easily convince oneself that Eð2Þ contains the same infor-
mation as E. The advantage of this measurement is that the
swap only occurs between particles in two chains which
are adjacent to each other. In practice, the ancilla could
consist of a different atomic species (see [20]), so that it
can be transported independently of the spin chains. As
explained in that reference, one could use this ancilla to
apply the conditional unitary operators sequentially to the
spin chains. Additionally, the swapping operator can be
generated by letting the ancilla control the pairwise inter-
action among the neighboring spins of the first and second
chain in regions 1 and 3, corresponding to a Hamiltonian
H ¼ Pðhi þ h2i Þ, where hi¼Si;A �Si;B, for a time t¼�=2.
We would like to emphasize that this procedure may be
very difficult in practice, but it still shows that in principle
one can measure the order parameter.
To conclude, in this Letter we have introduced an order

parameter for symmetry-protected phases in one dimen-
sion. We have illustrated our construction for SO(3) sym-
metry, where we have verified our predictions numerically
for the spin-1 bilinear-biquadratic model. We found that
the order parameter allows us to faithfully determine which
gapped phase the system is in; moreover, we found that
(somewhat surprisingly) it also returns a distinct signature
for the gapless phases of the model.
Similar order parameters can be constructed for

symmetry-protected gapped phases with partial symmetry
breaking [3], by first using conventional local order pa-
rameters to detect which symmetries are broken, and
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subsequently measuring order parameters such as the one
presented to detect the topological phase protected by the
remaining unbroken symmetries. An interesting open
question is whether our method to identify equivalence
classes of 2-cocycles, corresponding to elements in
H2ðG;Uð1ÞÞ, can be modified to distinguish symmetry-
protected phases in two dimensions, which are labeled by
equivalence classes of 3-cocycles and correspondingly the
third cohomology group H3ðG;Uð1ÞÞ. Finally, as the end
points of string operators can be interpreted as quasipar-
ticles, it would be interesting to understand whether our
order parameter can be effectively understood as extracting
information about the quasiparticle braiding properties.
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