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We study how the interplay of dissipation and interactions affects the dynamics of a bosonic many-body

quantum system. In the presence of both dissipation and strongly repulsive interactions, observables such

as the coherence and the density fluctuations display three dynamical regimes: an initial exponential

variation followed by a power-law regime, and finally a slow exponential convergence to their asymptotic

values. These very long-time scales arise as dissipation forces the population of states disfavored by

interactions. The long-time, strong coupling dynamics are understood by performing a mapping onto a

classical diffusion process displaying non-Brownian behavior. While both dissipation and strong inter-

actions tend to suppress coherence when acting separately, we find that strong interaction impedes the

decoherence process generated by the dissipation.
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Understanding the influence of the environment on the
dynamics of physical systems is of paramount importance
in the development of quantum-based technologies. For
systems as diverse as those encountered in solid-state
physics [1–4], atomic and molecular physics [5], or quan-
tum optics [6,7], coupling to an environment often results
in the loss of coherence. Devising methods to control and
suppress decoherence is therefore at the heart of various
present and future applications such as high-precision
clocks, measuring devices [8,9], and quantum computers
[10]. A clear understanding of the effects of an environ-
ment on correlated quantum many-body systems is pres-
ently lacking. For example, the consequences resulting
from the interplay of interactions and dissipation are not
well known. Even though each process individually tends
to suppress coherence, it is not understood if they coop-
erate or destructively compete when acting simulta-
neously. An ideal testbed to answer such questions is
provided by cold atomic gases as, in these systems,
both the interactions and dissipative processes are highly
controllable.

Exciting phenomena have already been proposed to occur
when cold gases are coupled to an environment: a Zeno-like
behavior due to local atom losses in systems of interacting
atoms confined to double wells [11–13] or optical lattices
[14]; improved stability against weak dissipative effects
for bosonic atoms in both the weakly interacting [15] and
Mott-insulating regimes [16]; a dynamical phase transition
between a condensed and a thermal steady state [17] for a
coherence-enhancing dissipative process; and the possibility
to engineer dark states with highly desirable properties
[17–22].

In this work, we investigate the influence of a Markovian
(memoryless) environment, e.g., a light field or a thermal
cloud, on strongly interacting bosonic atoms in a double
well potential. We find that dissipation and interactions
destructively compete, resulting in two surprising phe-
nomena: (i) contrary to naive intuition, decoherence is
slowed down in the presence of strong interactions, and
(ii) at intermediate times, physical quantities, such as the
coherence and density fluctuations, are found to display a
slow power-law time-dependence characterized by a time
scale t� that is considerably enhanced by interactions.
The algebraic regime can be characterized in detail in

the limit of a large number of atoms N by mapping the
evolution onto a classical diffusion in the configuration
space of all Fock states. For N bosons confined to two
wells, this space is described by a single coordinate x. The
diffusion rate is found to be strongly dependent on the
configuration: it is large (small) for configurations which
have a low (high) cost in interaction energy. As shown
analytically, this translates into a non-Brownian diffusion

[23] with
ffiffiffiffiffiffiffiffihx2ip � �1=4 and a non-Gaussian probability

density pðx; �Þ / ��1=4e�x4=4�. Here � ¼ t=t�, with the
long time scale t� given by �t� ¼ 2N2ðU=JÞ2 (� is the
Markovian dissipation rate, U the interaction strength, and
J the tunneling coefficient between the two wells).
Considering N bosonic atoms trapped in a sufficiently

deep optical lattice with L sites, the evolution of the system
is described by the master equation

i@@t�̂ ¼ ½Ĥ; �̂� þ i@Dð�̂Þ: (1)

The first term ½Ĥ; �̂� describes the unitary evolution
of the density matrix �̂ governed by the Hamiltonian
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Ĥ ¼ �J
P

L�1
l¼1 ðb̂yl b̂lþ1 þ H:c:Þ þ U

2

P
L
l¼1 n̂lðn̂l � 1Þ. The

operators b̂yl and b̂l are bosonic creation and annihilation

operators on site l and n̂l ¼ b̂yl b̂l counts the number of

atoms. At large U=J the atoms tend to be more localized,
which typically results in a reduction of the coherence

between neighboring sites C ¼ P
lhb̂yl b̂lþ1 þ b̂ylþ1b̂li. The

dissipative process is modeled byDð�̂Þ ¼ �
P

L
l¼1ðn̂l�̂n̂l �

1
2 n̂

2
l �̂� 1

2 �̂n̂
2
l Þ, where � is the coupling to the environment

and the quantum jump operators correspond to local density
operators n̂l. This form of dissipation has been identified as
one of the most important heating processes in the presence
of a red-detuned optical lattice potential [16,24]. In the
absence of interactions (U ¼ 0), it causes a rapid exponen-
tial loss of coherence CðtÞ ¼ Cð0Þe��t.

It is useful to recast the quantummaster equation (1) into
an eigenvalue equation M� ¼ ���, with �� and ���

being respectively eigenvectors and eigenvalues of the
matrix M. The positive real parts of �� are the inverse
relaxation times, since ��ðtÞ ¼ e���t��ð0Þ. Hence, the
longest living states are associated with the smallest
Reð��Þ. For J ¼ 0, all combinations of diagonal Fock
states jfnlgihfnlgj are steady states (�� ¼ 0). However,
for J � 0 (and L finite), the unique steady state is the
completely mixed state �̂S /

P
fnlgjfnlgihfnlgj in which all

Fock states have equal weight (corresponding to maximal
von Neumann entropy). We will show that �̂S is reached
in a highly nontrivial way.

To pinpoint this, we concentrate on the two site Bose-
Hubbard model (L ¼ 2). Various aspects of the influence
of dissipation have been studied in this setup, focusing
mainly on weak interactions [25–29]. For our study the
atoms are prepared in the symmetric ground state of the
Hamiltonian, and the dissipation is turned on at time
t ¼ 0 [30]. We monitor different experimentally measur-
able quantities, such as the coherence between the two
wells C, the local density fluctuations � ¼ hn21i � hn1i2,
and the probability Pb, to measure a balanced configura-
tion with N=2 particles in each well. At low interaction
strength U or small particle number N, exponential evolu-
tions dominate. Their time scales depend crucially on the
parameter regime considered. In contrast, for sufficiently
large N and UN � @�, three distinct regimes can be
identified: (i) a fast exponential variation at short times
(�t � 1), (ii) a drastic slowing down associated with a
power-law regime at intermediate times (1=� � t � t�),
and (iii) a slow exponential approach to the asymptotic
value at long times (t * t�). These regimes are exemplified
in Fig. 1 for the rise of density fluctuations and the decay of
coherence obtained by solving Eq. (1) numerically.

A first insight into the origin of regimes (ii) and (iii) can
be gained by analyzing the eigenvalue spectrum [inset of
Fig. 1(a)]. The final exponential regime is due to the fact
that the lowest nonvanishing real part of an eigenvalue
� / �J2=U2N2 is isolated. The algebraic regime arises
from the complex interplay of many slowly decaying states

�� (having nonzero overlap with the initial state) corre-
sponding to the band of eigenvalues in the inset of Fig. 1(a).
To understand quantitatively the different dynamical

behaviors, we reduce the system to a simpler model for
t � 1=� and strong interaction U � J, @�. This in turn
can be mapped using the large N limit onto a classical
diffusion problem in configuration space. We represent
the density matrix in the basis of Fock states as
�̂ ¼ P

�n;mjnihmj where n, m ¼ 0; 1; . . . ; N labels the

number of atoms in the left well. In this regime, it is
justified to use adiabatic elimination and map the full
evolution onto an equation for the diagonal elements �n;n

only. This is done by integrating @t�n;nþ1 [derived from

Eq. (1)] by noticing that the diagonal terms of the density
matrix are slowly varying compared to the off-diagonal
ones (following [31] and for even N). This gives

�n;nþ1ðtÞ � JR

�
1� i@�

ðN � 2n� 1ÞU
�
��nðtÞ (2)

where JR ¼ J
ffiffiffiffiffiffiffiffiffi
Wnþ1

p
2UN2 , Wnþ1 ¼ ðnþ1ÞðN�nÞ

ðn�N=2þ1=2Þ2 , and ��n ¼
N2ð�nþ1;nþ1 � �n;nÞ. Using (2) into @t�n;n, one obtains
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FIG. 1 (color online). (a),(b) Density fluctuations (a) and
rescaled coherence (b) versus rescaled time �. A data collapse
is observed for large interaction strength U and atom number N,
independently of the other system parameters. The analytical
results are taken from Eqs. (6) and (7). The inset of (a) shows
the real parts of the smallest �� versus N and a fit / 1=N2.
(c),(d) Coherence decay at short (c) and long (d) times (N ¼ 60,
U=J ¼ 20, and @�=J ¼ 1) with exponential fit (continuous
green line). L ¼ 2.
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@��n;n ¼ 2ðWnþ1��n �Wn��n�1Þ: (3)

Remarkably, the interaction, dissipative coupling, tunneling
amplitude, and particle number only enter the equations
for the diagonal elements �n;n via the dimensionless time

� ¼ t=t�. The emerging time scale t� ¼ 2N2U2

�J2
controls

the long-time behavior of the system and becomes very
large for strong coupling U and large N [32]. Additionally,
this dependence explains the scaling of the lowest
eigenvalues.

We now perform the large N limit calculation in which
the discrete master equation (3) is mapped onto a classical
diffusion equation in the continuum. We map the configu-
ration space onto a coordinate space by x ¼ n=N � 1=2 2
½�1=2; 1=2� that becomes continuous in the large N limit.
The boundaries (x � �1=2) correspond to strongly imbal-
anced occupation of the double well, whereas the center
(x ¼ 0) corresponds to the balanced configuration. The
diagonal elements of the density matrix are related to a
probability density pðx; �Þ by N�n;nð�Þ ¼ pðx; �Þ, with

normalization
R1=2
�1=2 pðxÞdx ¼ 1 (insuring tr�̂ ¼ 1). We

thus obtain the diffusion equation

@x½DðxÞ@xpðx; �Þ� ¼ @�pðx; �Þ: (4)

The diffusion function DðxÞ ¼ 1
4x2

� 1 is strongly depen-

dent on the variable x: it diverges at the center (x ¼ 0) and
vanishes at the boundaries (x � �1=2). Physically this
slow diffusion at the boundaries corresponds to the slow
population of the energetically costly imbalanced
configurations.

Within this mapping, the initial ground state corresponds
to pðx; � ¼ 0Þ and is peaked at x ¼ 0. The asymptotic long
time limit is the uniform distribution pðx; � ¼ 1Þ ¼ 1
representing the totally mixed state �̂S. To gain more in-
sight into the actual diffusion process, we insert the scaling
ansatz pðx; �Þ ¼ 1

�� fð�Þ with � ¼ x=�� into (4). We find

that a scaling solution exists provided � ¼ 1=4 and � � 1.
The function fð�Þ satisfies �f00 þ ð�4 � 2Þf0 þ �3f ¼ 0,
whose solution can be found in closed form: fð�Þ /
expð��4=4Þ. Therefore, the diffusion process at short
rescaled time (� � 1, i.e. t � t�) is non-Brownian and
described by

pðx; �Þ ¼
ffiffiffi
2

p
�ð1=4Þ

1

�1=4
expð�x4=4�Þ (5)

where �ð1=4Þ in the normalization denotes the gamma

function. Compared to normal diffusion given by pðx; �Þ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4	
�

p
expð�x2=4
�Þ for a space-independent diffu-

sion constant 
, the divergence inDðxÞ for x � 0 leads to a
highly accelerated initial diffusion.

The analytical expression (5) reproduces accurately
the exact evolution of the diagonal terms of the density
matrix computed from (1) as shown in Fig. 2. The very fast
initial broadening of the peak is followed by a much

slower occupation of the boundary (imbalanced) regions.
In particular, we observe a clear power-law decay (with
exponent 1=4) in the exact evolution of the density matrix
elements, in very good agreement with the analytical form
(5) even for a relatively low number of atoms. For times
� ¼ t=t� � 0:1 (time scales that can actually be very long
in an experiment), the lowest eigenvalue of the discrete
spectrum of (4) due to the finite atom number controls the
eventual exponential convergence of pðx; �Þ to the uniform
distribution.
The diffusion in configuration space has important con-

sequences for experimentally measurable quantities. The
probability of measuring a balanced configuration PbðtÞ is
directly proportional to the central density pðx ¼ 0; tÞ.
Therefore, its detection would reveal the passage from
the initially exponential decay to the algebraic one in

��1=4 [see the thick red line in Fig. 2]. The density fluctua-
tions � show an increase that in the power-law region is

well described, using �=N2 ¼ R1=2
�1=2ðx2 þ xÞpðx; �Þdx, by

�

N2 ¼ 2�ð3=4Þ
�ð1=4Þ

ffiffiffi
�

p ¼
ffiffiffi
2

p
�ð3=4Þ

�ð1=4Þ
J

NU

ffiffiffiffiffi
t�

p
: (6)

As shown in Fig. 1(a), this equation describes accurately the
exact density fluctuations at intermediate times without any
adjustable parameter. At longer times, the density fluctua-
tions tend towards the asymptotic value �

N2¼ 1
12þ 1

6N . For

the coherence, from the continuum limit of (2), we can

derive a scaling behavior CðtÞ ¼ J=UCðt=t�Þ where Cð�Þ �R1=2
�1=2

x2�1=4
x @xpðx; �Þdx. This scaling is verified over a

large range of different parameters U > @�, J as shown in
Fig. 1(b). In the power-law regime, where � is small, this
reads

FIG. 2 (color online). Diagonal terms of the density matrix
�n;n versus rescaled time � in log-log form: the exact solutions of

Eq. (1) for n ¼ 41ðtopÞ . . . 80ðbottomÞ are represented by blue
continuous lines; the element n ¼ 40 (thick red line) is propor-
tional to the probability of finding a balanced configuration Pb;
the corresponding diffusion density pðx ¼ n=N; �Þ Eq. (5) up to
n=N ¼ 60 are shown in dashed green lines. Inset: 3D plot of
the evolution. Parameters: U=J ¼ 20, @�=J ¼ 1, N ¼ 80, and
L ¼ 2.
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CðtÞ
N

¼ �ð3=4Þ
2�ð1=4Þ

J

UN

1ffiffiffi
�

p ¼ �ð3=4Þffiffiffi
2

p
�ð1=4Þ

1ffiffiffiffiffi
�t

p (7)

again in excellent agreement with the exact results over a
large range of intermediate times without any adjustable
parameter [Figs. 1(b) and 3]. We note that in this regime the
coherence only depends on the original dissipative coupling
� and not on J or U.

In Fig. 3 we compare the decay of the coherence for
stronger and weaker interaction strengths. A weaker inter-
action strength typically leads to a larger value of the
coherence in the initial state and at small times (inset).
After the initial exponential decay, the regime of algebraic
decay / 1=

ffiffi
t

p
is manifest for large interaction strength

UN � @�, J. This regime shrinks when lowering the
interaction and is followed by the eventual exponential
decay at long times. Surprisingly, the coherence for larger
interactions exceeds that for lower interactions and sur-
vives for much longer times. Hence the presence of inter-
actions impedes the dissipation-induced decoherence. The
physical reason behind this finding is that it is difficult to
populate Fock space configurations that are energetically
disfavored by strong interactions. We stress that the slow-
ing down of decoherence, unlike the use of particular
squeezed, ‘‘decoherence-free,‘‘ states [33], generally holds
independently of the initial condition.

To summarize, we found that the time evolution of the
coherence and density fluctuations of strongly interacting
bosonic systems subject to dissipative effects can present
three consecutive regimes: an initial fast exponential one,
and an intermediate power-law regime associated with
anomalous diffusion that is eventually followed by a final
exponential regime. The latter sets in after a time�t�, which
becomes very large for strong interactions and large number
of particles, and the decay rate is reduced accordingly.
Simulations on three-site systems and mean-field calcula-
tions for an infinite lattice confirm the existence of the slow-
ing down of decoherence and the presence of a power law

regime. We understand that a power-law dynamics, atypical
for the considered Markovian environment, also occurs for
different kinds of Markovian dissipative mechanisms [34].
To probe these phenomena experimentally, one could

use a single double well potential or an array of decoupled
double wells generated by an optical superlattice potential.
Observing the different regimes proposed here requires
strong interactions while maintaining the single band
approximation during the whole experiment. To meet this
requirement, we suggest the use of a light species, for
example, lithium, whose interaction can be tuned by a
Feshbach resonance [35,36]. The light mass enables the
use of a deep optical lattice potential (a band gap of about
250 kHz is realistically achievable) while keeping reason-
able time scales. An alternative realization would be to trap
two bosonic species in one well and to tune their interaction
with a Feshbach resonance [37].
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