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Cascaded nonlinearities have attracted much interest, but ultrafast applications have been seriously

hampered by the simultaneous requirements of being near phase matching and having ultrafast femto-

second response times. Here we show that in strongly phase-mismatched nonlinear frequency conversion

crystals the pump pulse can experience a large and extremely broadband self-defocusing cascaded Kerr-

like nonlinearity. The large cascaded nonlinearity is ensured through interaction with the largest quadratic

tensor element in the crystal, and the strong phase mismatch ensures an ultrafast nonlinear response with

an octave-spanning bandwidth. We verify this experimentally by showing few-cycle soliton compression

with noncritical cascaded second-harmonic generation: Energetic 47 fs infrared pulses are compressed in

a just 1-mm long bulk lithium niobate crystal to 17 fs (under 4 optical cycles) with 80% efficiency, and

upon further propagation an octave-spanning supercontinuum is observed. Such ultrafast cascading is

expected to occur for a broad range of pump wavelengths spanning the near- and mid-IR using standard

nonlinear crystals.
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Ultrashort laser pulses with a duration of a few optical
cycles are fascinating because they are brief enough to
resolve temporal dynamics on an atomic level like chemi-
cal reactions, molecular vibrations, and electron motion.
Additionally, since they are very broadband and can
become extremely intense, few-cycle pulses are used for
coherently exciting and controlling matter on a micro-
scopic level [1]. However, bandwidth limitations in the
amplification process means that only multicycle energetic
pulses are delivered from laser amplifiers, which necessi-
tates efficient external compression schemes [2]: the band-
width needed to support a few-cycle pulse is generated
by nonlinear processes, typically self-phase modulation
(SPM) from a cubic Kerr nonlinearity. The nonlinear step
leaves a strongly chirped and stretched pulse, and temporal
compression is achieved by subsequent dispersion com-
pensation (e.g., by gratings or chirped mirrors).

Access to ultrafast and extremely broadband self-
defocusing nonlinearities is very attractive for femto-
second nonlinear optics. First, whole-beam and small-scale
self-focusing problems encountered in Kerr-based com-
pressors are avoided so the input pulse energy is practically
unlimited [3]. Second, with solitons both spectral broad-
ening and temporal compression can occur in a single
nonlinear material; solitons are stable nonlinear waves
that exist as a balance between nonlinearity and dispersion.
For a self-defocusing nonlinearity soliton formation re-
quires normal (positive) dispersion, which is predominant
in the near-IR where the majority of lasers operate.

Self-defocusing nonlinearities can be achieved with cas-
caded harmonic generation. This occurs when a frequen-
cy conversion process, like second-harmonic generation

(SHG), is incomplete due to absence of phase matching
�k � 0, and instead the pump experiences a Kerr-like
nonlinearity nIcasc / �d2eff=�k, controllable in both magni-

tude and sign through �k [4]. Cascaded SHG has been
used for high-energy femtosecond pulse compression
[3,5–9], but has not found significant use to date. One
reason is that ultrafast cascading is limited by the simulta-
neous requirements of being near phase matching and
having ultrafast femtosecond response times, which
limits the usable input wavelengths and nonlinear crystals
[3,5–9]. Therefore only multicycle compressed pulses
were observed in �-barium borate (BBO) crystals at
800 nm [3,5] and at longer wavelengths (1260 nm) few-
cycle compression was observed only in a narrow opera-
tion regime [6].
Here we show a surprising solution that has always been

there but has been overlooked for good reason: when ex-

ploiting interaction with the largest�ð2Þ tensor components,
strong and octave-spanning self-defocusing cascaded non-
linearities can be obtained even with huge phase mismatch
and group-velocity mismatch (GVM). We exploit values of
�k ’ 500 mm�1 and d12 ¼ �500 fs=mm that are an order
of magnitude larger than previous experiments. Ordinarily,
this type of interaction is accessed only by quasiphase
matching (QPM), providing an indication of the surpris-
ingly large �k. We demonstrate experimentally the utility
of this process by compression of energetic 47-fs infrared
pulses to 17 fs (4 cycles of the electric field) through
excitation of self-defocusing temporal solitons. This occurs
in an only 1 mm long ordinary lithium niobate crystal.
Upon further propagation an octave-spanning supercontin-
uum is observed.
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In cascaded SHG the frequency conversion from the
fundamental wave (FW, !1) to its second harmonic (SH,
!2 ¼ 2!1) is not phase matched: after a coherence length
�=j�kj only weak up-conversion to the SH occurs, fol-
lowed by the reverse process of back-conversion after
another coherence length. On further propagation this cas-
cade process is cyclically repeated and the FW effectively
experiences a Kerr-like nonlinear refractive index change
�n ¼ nIcascI proportional to its intensity I. In the strong
phase-mismatch limit nIcasc ’ �2!1d

2
eff=c

2"0n
2
1n2�k [4],

where �k ¼ k2 � 2k1, kj ¼ nj!j=c are the wave numbers

and nj the linear refractive indices. Thus, �k > 0 gives

a negative (self-defocusing) cascaded nonlinearity.
However, cubic nonlinearities in the material, stemming
from the electronic Kerr effect, are usually positive
(nIKerr;el > 0, i.e., self-focusing), and will therefore compete

with the induced self-defocusing cascading nonlinearity: to
obtain a negative effective nonlinear refractive index
nIeff ¼ nIcasc þ nIKerr;el we must have jnIcascj> nIKerr;el. To

date, critical cascaded SHG was used for energetic pulse
compression experiments [3,5–7]. Despite not using the
largest quadratic tensor components, in critical SHG the
FWand SH have orthogonal polarizations and nIeff < 0 can
be achieved by angle tuning the crystal close to the phase-
matching point [10]. Consider now the normalized fre-

quency response of the cascaded nonlinearity Rcascð�Þ �
�k=ð12 kð2Þ2 �2 � d12�þ�kÞ [8], where d12 is the GVM

and kð2Þ2 ¼ d2k2
d!2 is the SH group-velocity dispersion (GVD).

Here for simplicity only up to second-order dispersion is
included, making it possible to derive a threshold where
Rcasc becomes resonant [8]

�kr ¼ d212=2k
ð2Þ
2 : (1)

For kð2Þ2 > 0, the nonresonant regime is �k > �kr. When
�k is significantly above this threshold the bandwidth

�casc ¼ j8ð�k��krÞ=kð2Þ2 j1=2 can span over an octave.

The equivalent temporal response tcasc ¼ 1=�casc is sub-
cycle making the cascading practically instantaneous.
However, if �k is reduced to increase the cascaded non-
linear strength, the cascaded nonlinearity narrows spec-
trally (�k ’ �kr) and then eventually becomes resonant
(�k < �kr), making only weak pulse compression pos-
sible before pulse distortion sets in [8,9]. Note that the
tunability of the cascading allows for generating a self-
focusing nonlinearity as well, provided that�k < 0. In this
case the requirements for an octave-spanning bandwidth

are anomalous dispersion of the harmonic (here kð2Þ2 < 0)
and �k < �kr.

Interaction through the largest quadratic tensor compo-
nent promises an increased cascaded nonlinearity because
nIcasc / �d2eff=�k. This makes noncritical cascaded SHG,

in which the FW and SH are polarized along the crystal
axes, very attractive. Unfortunately the cascading strength

is at the same time reduced due to a complete lack of phase
matching. QPM can increase nIcasc [11] by reducing the
residual phase mismatch �kQPM ¼ �k� 2�=�, where �
is the QPM domain length, but since QPM also reduces deff
(with at least 2=�) the breakeven value for achieving the
same nIcasc as without QPM is �kQPMðBEÞ ¼ 4�k=�2. Let

us investigate the consequences for lithium niobate
(LiNbO3, LN): Fig. 1(a) shows the material �k vs pump
wavelength. When using QPM to reduce its large value, it
always comes with the price of having �kQPMðBEÞ & �kr.
This is a consequence of a high �kr threshold caused by a
large GVM that is typical of noncritical SHG. In Fig. 1(c)
the cascaded frequency response Rcasc is plotted for �1 ¼
1:3�m: when using QPM the breakeven case has a reso-
nant cascading response as �kQPMðBEÞ<�kr, implying

that the cascading can no longer support ultrafast interac-
tion. These properties deteriorate when QPM is forced to
achieve a stronger nIcasc than the material-dispersion case.
This might have implications for ultrafast cascading using
QPM, such as in Refs. [12].
Since QPM seems generally unsuitable for increasing

the nonlinearity, we have to use the large �k provided
by the material. Contrary to conventional wisdom we
now show that in this case the cascading properties are
favorable and even advantageous. First, as Fig. 1(c) shows
the material-dispersion case has a cascading frequency
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FIG. 1 (color online). Performance of noncritical (� ¼ �=2)
cascaded SHG in LN. (a) Wavelength dependence of �k from
material-dispersion, the resonant threshold �kr from Eq. (1), and
the breakeven QPM value �kQPMðBEÞ. The Sellmeier equation

from Ref. [19] was used at T ¼ 293 K. (b) Predicted jnIcascj
using deff ¼ d33 ¼ �25:0 pm=V at � ¼ 1:064 �m [20], and
using Miller’s scaling to evaluate the quadratic nonlinearity at
other wavelengths, and the predicted nIKerr;el [13] using

K ¼ 3100 eV3=2cm=GW [17]. (c) Rcasc at � ¼ 1:3 �m when
using material-dispersion, and when using QPM to get break-

even as well as twice as large jnIcascj. Note: Rcascð�Þ ¼
�k=½k2ð�þ!2Þ � kð1Þ1 �� 3k1� includes full SH dispersion.
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response that is nonresonant and extremely broadband
(bandwidth �casc spans 1.5 octaves). This is because
�k > �kr, and therefore the large GVM associated with
noncritical interaction does not cause problems because�k
is so big. This holds in the entire regime supporting self-
defocusing solitons (up to the zero-dispersion wavelength
1:92 �m), see Fig. 1(a). Consequently, the noncritical
cascaded nonlinearity is always nonresonant and ex-
tremely broadband: we checked that its bandwidth spans
over an octave in the entire plotted range and consequently
the cascading is practically instantaneous (cascaded re-
sponse time tcasc < 1 fs). Similar very favorable properties
were found in all other nonlinear crystals we checked as
well. The question is now whether nIcasc is strong enough
when the large material �k is used: Fig. 1(b) shows jnIcascj
whose strength increases with wavelength due to a reduced
�k. For �1 > 0:96 �m it is larger than nIKerr;el as calculated

with the two-band model [13]. Thus, despite the known
limitations of the latter model, in this range an effective
self-defocusing nonlinearity nIeff < 0 can be expected.

We conducted an experiment to illustrate the ultrafast
and broadband nature of the cascading by using self-
defocusing solitons to compress multicycle near-IR pulses
towards few-cycle duration. A commercial Ti:sapphire
regenerative amplifier and an optical parametric amplifier
generated Gaussian shaped pulses at � ¼ 1:300 �m
with �TFWHM ¼ 47 fs, 59 nm FWHM bandwidth, and
’ 200 �J pulse energy. Using a multiple-shot SHG
frequency-resolved optical gating (FROG) device with a
30 �m thick BBO crystal the measured group-delay dis-
persion was �300 fs2, corresponding to a 42 fs FWHM
transform-limited pulse. We found that good compression
relied on ensuring that the input pulses were not positively
chirped (this trend was also observed numerically). A
broad beam spot (0.46 mm FWHM) ensured negligible
diffraction, and it was controlled by a reflective silver-
mirror telescope system, and the peak intensity was
adjusted with a neutral density filter. The crystal was
a 1-mm-long, 5% MgO-doped X-cut congruent LN
(� ¼ �=2, j�j ¼ �=2, FW and SH polarized along the
vertical optical Z axis, 10� 10 mm2 aperture). The output
pulses were monitored by either (a) multiple-shot inten-
sity autocorrelator (AC) with a 100 �m BBO crystal,
(b) FROG or, (c) optical spectrum analyzer (OSA).

Figure 2(a) shows representative spectra measured by
the OSA. For lower intensities, some spectral broadening
occurs. When the intensity reaches Iin ¼ 0:5 TW=cm2, a
weak shoulder appears on the blue side of the central lobe.
At this point the AC traces evidenced pulse compression,
which became strongest at Iin ¼ 1:0 TW=cm2 (0.13 mJ
pulse energy). The FROG results in Fig. 3 reveal more
details at this intensity. The retrieved temporal intensity
shows clear pulse compression, and a smaller delayed
pulse. A Gaussian fit to the central spike gave 16.5 fs
FWHM (below 4 optical cycles), and by comparing the

fitted-curve area with the total area, we estimate an
efficiency of 80%. The flat phase in the time trace indicates
that we are close to the soliton formation point. The
spectral phase is also quite flat and indeed by calculating
the transform-limited pulse supported by the spectrum
gave a 14 fs FWHM pulse, close to the observed value.
The retrieved FROG spectral intensity in Fig. 3(d) is in
excellent agreement with the OSA spectrum in Fig. 2, and
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FIG. 2 (color online). (a) Spectra after a 1 mm LN crystal for
various input intensities. (b) Spectra after 5 and 10 mm propa-
gation using Iin ¼ 1:0 TW=cm2 (averaged over 1100 shots). The
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FIG. 3 (color online). FROG measurements at Iin ¼
1:0 TW=cm2: (a),(b) FROG traces (amplitude) of the output
pulse. (c1) The temporal and (d) spectral amplitudes and phases
retrieved by the FROG algorithm. (c2) The calculated FROG
intensity AC and the experimentally measured AC.
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similarly the FROG AC trace agrees well with the inde-
pendently measured AC trace, see Fig. 3(c).

Below 1:92 �m LN is normally dispersive (GVD coef-

ficient kð2Þ1 ¼ þ162 fs2=mm at 1:3 �m), so the combina-

tion of spectral broadening and temporal compression well
below the transform limit of the input pulse proves that we
have excited a self-defocusing soliton. In fact, if the non-
linearity were self-focusing, no pulse compression could
be achieved as such a nonlinearity would require anoma-
lous GVD compensation after the crystal. We checked with
an IR camera that the FW showed no diffraction, which can
be attributed to the short crystal and broad spot size.
Soliton formation in such a short crystal is a consequence
of the huge FW GVD associated with using the largest
nonlinear tensor components, which implies that only a
short propagation distance is needed to compensate for the
nonlinear SPM-induced chirp.

Tuning the intensity around the value for optimal com-
pression, Iin ¼ 1:0 TW=cm2, the experiment showed
similar pulse compression and spectral traces in the
range Iin ¼ 0:8–1:3 TW=cm2. Beyond 1:3 TW=cm2 sub-
stantially more complex autocorrelation traces were ob-
served. For smaller intensities the temporal compression
gradually disappeared. This is typical of soliton compres-
sion and is consistent with numerical simulations.

With further propagation, the spectrum continues to
broaden rapidly; the physics behind this is similar to
standard supercontinuum generation [14], namely, soliton
fission after the initial compression point followed by
various nonlinear interaction steps that broaden the spec-
trum. The generation of an octave-spanning supercontin-
uum spectrum [Fig. 2(b)] in longer crystals is direct
evidence of the ultrabroad bandwidth of the cascading
process we investigate here.

We performed numerical simulations using the 3þ 1D
slowly evolving wave approximation [15], including the
Raman effect modeled as a 4-mode complex Lorentzian in
frequency domain (for Raman spectrum parameters, see
[16]). Based on Raman peak gain [16] and Z-scan mea-
surements [17], we made a detailed analysis (which will be
published elsewhere) and found that at � ¼ 1:3 �m the
experimental results [16,17] support the values nIKerr ¼
45� 10�20 m2=W and fR ¼ 0:50 (both �10%), giving
nIKerr;el ¼ ð1� fRÞnIKerr ¼ 22:5� 10�20 m2=W. In Fig. 4

we used the same input pulse parameters as the Iin ¼
1:0 TW=cm2 experiment. The on-axis spectrum (b) shows
a strong central lobe, a dominant blue shoulder, and a
weaker red shoulder followed by a broad plateau. The on-
axis time trace (a) also shows a strong spike and a weaker
trailing pulse. The main soliton is shorter than what we
observed experimentally, but the simulation indicates that
the trailing pulse we saw is a weaker soliton formed by
soliton fission (the intensity corresponds to an effective
soliton order of around 6 for this simulation). We found
that this kind of early-stage soliton fission was mainly

caused by the rather large soliton order combined with
strong Raman effects. This fission process continues so
after 2 mm three solitons exist, and upon further propaga-
tion an extremely wide supercontinuum is formed. These
simulations also confirmed that no diffraction occurs, as
was observed in the experiment. Moreover, concerning the
spatiotemporal distribution of the compressed soliton, the
space-time cross section in Fig. 4(c) shows that it is quite
homogeneous (similar to the Gaussian case of Ref. [7]).
Finally, note the optical Cherenkov waves that emerge in
Fig. 4 as broadband waves centered around � ¼ 3:0�m;
such waves could be an efficient source of mid-IR
few-cycle radiation [18]. The simulations indicate the
possibility of exciting self-defocusing solitons at shorter
wavelengths as well. At some point, however, the effective
nonlinearity will become focusing, see Fig. 1(b). At longer
wavelengths the Kerr, and, in particular, the Raman, non-
linearities will be less dominating, making cascading more
favorable.
Concluding, strongly phase-mismatched cascading ex-

ploiting the largest quadratic nonlinear tensor element can
create ultrafast and octave-spanning self-defocusing cas-
caded nonlinearities. We confirmed this by the first experi-
mental observation of few-cycle self-defocusing soliton
pulse compression in noncritical cascaded SHG, which
occurred in a short (1 mm) bulk lithium niobate crystal.
Upon further propagation an octave-spanning supercontin-
uum was generated. The noncritical interaction gives
short interaction lengths and zero spatial walk-off, which
represent significant improvements compared to previous
experiments [3,5–7]. Because the nonlinearity is self-
defocusing the pulse energy is readily scalable in large-
aperture crystals to multimillijoules. As it is also compact,

FIG. 4 (color online). Numerical simulation of 2 mm propa-
gation in LN with Iin ¼ 1:0 TW=cm2. The FWon-axis evolution
along z is shown as (a) time intensity and (b) spectral intensity.
‘‘N’’ and ‘‘A’’ indicate the normal and anomalous dispersion
regimes, and the color scale is saturated for clarity. The top cuts
show the intensities at input, z ¼ 1 mm (the position indicated
with a dashed white line) and z ¼ 2 mm. (c) and (d) show the
transverse variation along the x direction of the time and spectral
contents at z ¼ 1 mm and fixing y ¼ 0.
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cheap, and works already for few microjoule pulses, this
compressor may replace or fill out gaps of standard hollow-
fiber compressors [2].

Paradoxically, despite the strong phase mismatch a
strong self-defocusing cascaded nonlinearity is achieved
even without QPM owing to a huge quadratic nonlinearity.
However, it is exactly the strong phase mismatch that
ensures a nonresonant octave-spanning cascaded nonline-
arity, which is practically instantaneous, so even with a
large group-velocity mismatch ultrafast femtosecond inter-
action is possible. This discovery may open a new era of
ultrafast cascading based on strongly phase-mismatched
interaction exploiting the largest quadratic nonlinearities,
in particular, with semiconductor materials that are known
for their huge quadratic nonlinearities that cannot be phase
matched. It also implies that QPM is not needed to increase
the cascaded nonlinearity. Thus, some of the technological
limitations of QPM are removed, like complexity in pro-
duction, poling quality, limited beam aperture, etc. Not
only that, but avoiding QPM is often crucial for ultrafast
purposes as the cascaded nonlinearity can become resonant
with QPM.
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Physics Vol. 95 (Springer, Berlin, 2004), pp. 137–178.

[3] X. Liu, L. Qian, and F.W. Wise, Opt. Lett. 24, 1777
(1999).

[4] L. A. Ostrovskii, Pis’ma Zh. Eksp. Teor. Fiz. 5, 331 (1967)
[JETP Lett. 5, 272 (1967)]; J.M. R. Thomas and J. P. E.
Taran, Opt. Commun. 4, 329 (1972); R. DeSalvo, D. J.
Hagan, M. Sheik-Bahae, G. Stegeman, E.W. Van
Stryland, and H. Vanherzeele, Opt. Lett. 17, 28 (1992).

[5] S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, J. Opt.

Soc. Am. B 19, 2505 (2002).
[6] J. Moses and F.W. Wise, Opt. Lett. 31, 1881 (2006).
[7] S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S.

Kurimura, K. Kitamura, M. Cha, and T. Taira, Appl.

Phys. Lett. 84, 1055 (2004); X. Zeng, S. Ashihara, X.

Chen, T. Shimura, K. Kuroda, Opt. Commun. 281, 4499
(2008); J. Moses, E. Alhammali, J.M. Eichenholz, and

F.W. Wise, Opt. Lett. 32, 2469 (2007).
[8] M. Bache, O. Bang, J. Moses, and F.W. Wise, Opt. Lett.

32, 2490 (2007); M. Bache, O. Bang, W. Krolikowski,

J. Moses, and F.W. Wise, Opt. Express 16, 3273

(2008).
[9] M. Bache and F.W. Wise, Phys. Rev. A 81, 053815

(2010).
[10] J. Moses, B.A. Malomed, and F.W. Wise, Phys. Rev. A

76, 021802(R) (2007).
[11] M. L. Sundheimer, Ch. Bosshard, E.W. Van Stryland,

G. I. Stegeman, and J. D. Bierlein, Opt. Lett. 18, 1397
(1993); S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S.

Kurimura, K. Kitamura, J. H. Ro, M. Cha, and T. Taira,

ibid. 28, 1442 (2003).
[12] C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner,

and M.M. Fejer, J. Lightwave Technol. 24, 2579 (2006);

C. Langrock, M.M. Fejer, I. Hartl, and M. E. Fermann,

Opt. Lett. 32, 2478 (2007).
[13] M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E.W.

Van Stryland, IEEE J. Quantum Electron. 27, 1296

(1991).
[14] J.M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78,

1135 (2006).
[15] J. Moses and F.W. Wise, Phys. Rev. Lett. 97, 073903

(2006); M. Bache, J. Moses, and F.W. Wise, J. Opt. Soc.

Am. B 24, 2752 (2007); 27, 2505 (2010).
[16] I. P. Kaminow and W.D. Johnston, Phys. Rev. 160, 519

(1967); 178, 1528 (1969).
[17] R. DeSalvo, A. A. Said, D. J. Hagan, E.W. Van Stryland,

and M. Sheik-Bahae, IEEE J. Quantum Electron. 32, 1324
(1996).

[18] M. Bache, O. Bang, B. B. Zhou, J. Moses, and F.W. Wise,

Phys. Rev. A 82, 063806 (2010); Opt. Express 19, 22557
(2011).

[19] O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B

91, 343 (2008).
[20] I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito,

J. Opt. Soc. Am. B 14, 2268 (1997).

PRL 109, 043902 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
27 JULY 2012

043902-5

http://dx.doi.org/10.1103/RevModPhys.72.545
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1364/OL.24.001777
http://dx.doi.org/10.1364/OL.24.001777
http://dx.doi.org/10.1016/0030-4018(72)90070-3
http://dx.doi.org/10.1364/OL.17.000028
http://dx.doi.org/10.1364/JOSAB.19.002505
http://dx.doi.org/10.1364/JOSAB.19.002505
http://dx.doi.org/10.1364/OL.31.001881
http://dx.doi.org/10.1063/1.1647279
http://dx.doi.org/10.1063/1.1647279
http://dx.doi.org/10.1016/j.optcom.2008.04.080
http://dx.doi.org/10.1016/j.optcom.2008.04.080
http://dx.doi.org/10.1364/OL.32.002469
http://dx.doi.org/10.1364/OL.32.002490
http://dx.doi.org/10.1364/OL.32.002490
http://dx.doi.org/10.1364/OE.16.003273
http://dx.doi.org/10.1364/OE.16.003273
http://dx.doi.org/10.1103/PhysRevA.81.053815
http://dx.doi.org/10.1103/PhysRevA.81.053815
http://dx.doi.org/10.1103/PhysRevA.76.021802
http://dx.doi.org/10.1103/PhysRevA.76.021802
http://dx.doi.org/10.1364/OL.18.001397
http://dx.doi.org/10.1364/OL.18.001397
http://dx.doi.org/10.1364/OL.28.001442
http://dx.doi.org/10.1109/JLT.2006.874605
http://dx.doi.org/10.1364/OL.32.002478
http://dx.doi.org/10.1109/3.89946
http://dx.doi.org/10.1109/3.89946
http://dx.doi.org/10.1103/RevModPhys.78.1135
http://dx.doi.org/10.1103/RevModPhys.78.1135
http://dx.doi.org/10.1103/PhysRevLett.97.073903
http://dx.doi.org/10.1103/PhysRevLett.97.073903
http://dx.doi.org/10.1364/JOSAB.24.002752
http://dx.doi.org/10.1364/JOSAB.24.002752
http://dx.doi.org/10.1364/JOSAB.27.002505
http://dx.doi.org/10.1103/PhysRev.160.519
http://dx.doi.org/10.1103/PhysRev.160.519
http://dx.doi.org/10.1103/PhysRev.178.1528
http://dx.doi.org/10.1109/3.511545
http://dx.doi.org/10.1109/3.511545
http://dx.doi.org/10.1103/PhysRevA.82.063806
http://dx.doi.org/10.1364/OE.19.022557
http://dx.doi.org/10.1364/OE.19.022557
http://dx.doi.org/10.1007/s00340-008-2998-2
http://dx.doi.org/10.1007/s00340-008-2998-2
http://dx.doi.org/10.1364/JOSAB.14.002268

