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It is conventional to choose a typical momentum transfer of the process as the renormalization scale and

take an arbitrary range to estimate the uncertainty in the QCD prediction. However, predictions using this

procedure depend on the renormalization scheme, leave a nonconvergent renormalon perturbative series,

and moreover, one obtains incorrect results when applied to QED processes. In contrast, if one fixes the

renormalization scale using the principle of maximum conformality (PMC), all nonconformal f�ig terms

in the perturbative expansion series are summed into the running coupling, and one obtains a unique,

scale-fixed, scheme-independent prediction at any finite order. The PMC scale �PMC
R and the resulting

finite-order PMC prediction are both to high accuracy independent of the choice of initial renormalization

scale �init
R , consistent with renormalization group invariance. As an application, we apply the PMC

procedure to obtain next-to-next-to-leading-order (NNLO) predictions for the t�t-pair production at the

Tevatron and LHC colliders. The PMC prediction for the total cross section �t�t agrees well with the

present Tevatron and LHC data. We also verify that the initial scale independence of the PMC prediction is

satisfied to high accuracy at the NNLO level: the total cross section remains almost unchanged even when

taking very disparate initial scales �init
R equal to mt, 20mt, and

ffiffiffi
s

p
. Moreover, after PMC scale setting, we

obtain At�t
FB ’ 12:5%, Ap �p

FB ’ 8:28% and At�t
FBðMt�t > 450 GeVÞ ’ 35:0%. These predictions have a 1�

deviation from the present CDF and D0 measurements; the large discrepancy of the top quark

forward-backward asymmetry between the standard model estimate and the data are, thus, greatly

reduced.
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Physical predictions in quantum chromodynamics
(QCD) are in principle invariant under any choice of
renormalization scale and renormalization scheme. It is
common practice to simply guess a renormalization scale,
�R ¼ Q, Q being a typical momentum transfer of the
process, and then vary it over the range [Q=2, 2Q].
However, this arbitrary procedure leads to scheme-
dependent predictions at any finite order in perturbation
theory. In fact, a principal ambiguity in perturbative QCD
calculations lies in the choice of�R. It has been considered
as a main systematic error in QCD perturbative analyses.

The Brodsky-Lepage-Mackenzie method (BLM) [1] and
the principle of maximum conformality (PMC) [2,3] pro-
vide a solution to this problem. The PMC provides the
principle underlying BLM scale setting; the BLM is
equivalent to PMC through the PMC—BLM correspon-
dence principle [3], so we shall treat them on equal footing.
When one applies the PMC, all nonconformal f�ig terms in
the perturbative expansion are summed into the running
coupling so that the remaining terms in the perturbative
series are identical to that of a conformal theory, i.e., the
corresponding theory with f�ig � f0g.

The PMC coefficients and PMC scales may be different
under different renormalization schemes; however, their
combined result will be the same, since the scheme-
dependent PMC scales for different schemes are related

by commensurate scale relations [4]. Thus, QCD predic-
tions using PMC are independent of the renormalization
scheme. After PMC scale setting, the divergent ‘‘renorma-
lon’’ series with n!-growth disappear, so that a more
convergent perturbative series is obtained.
The PMC method satisfies all self-consistency con-

ditions, including the existence and uniqueness of the
scale, reflexivity, symmetry, and transitivity [5]. In the
Abelian limit, NC ! 0 at fixed � ¼ CF�s with CF ¼
ðN2

c � 1Þ=2Nc, it agrees with the Gell-Mann–Low pro-
cedure for setting the scale in QED [6,7]. Thus, as in
QED, the renormalization scale can be unambiguously
set at each finite order by the PMC. The PMC scales
and coefficients can be set order-by-order. A systematic,
scheme-independent procedure for setting PMC scales
up to next-to-next-to-leading-order (NNLO) has been
presented in Ref. [3].
Formally, one needs to choose an initial renormalization

scale �init
R for PMC. However, the final result when sum-

ming all f�ig terms to all orders will be independent of
�init

R ; i.e., for any observable O, @Oð�PMC
R Þ=@�init

r � 0,
where �PMC

R stands for the PMC scale. This is the invari-
ance principle used to derive renormalization group results
such as the Callan-Symanzik equations [8]. The PMC
scales in higher orders take the form of a perturbative
series in �s, so as to properly absorb all f�ig-dependent
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terms associated with renormalization into the �s-running
coupling [3,4]. At fixed order, there is some residual initial
scale dependence because of the unknown-higher-order
f�ig terms. However, such residual renormalization scale
uncertainty will be greatly suppressed since those higher
order f�ig terms will be absorbed into the PMC scales’
higher-order �s terms.

As an important application of the PMC, we shall pre-
dict the t�t-pair hadroproduction cross section �t�t up to
NNLO. It has been measured at the Tevatron and LHC
with high precision [9–12]. Theoretically, �t�t has been
calculated up to NLO within the modified minimal sub-

traction (MS) scheme [13]. Large logarithmic corrections
associated with the soft gluon emission have been inves-
tigated and resummed up to next-to-next-to-leading-
logarithmic corrections [14]. Even though complete
NNLO fixed-order results are not available, parts of the
fixed-order NNLO results have been derived through re-
summation [15]. These results provide the foundation for
estimating the NNLO results.

The hadronic cross section for top quark pair production
can be written as

�t�t ¼
X
i;j

Z S

4m2
t

dsLijðs; S;�fÞ�̂ijðs; �sð�RÞ; �R;�fÞ; (1)

where the parton luminosity

L ij ¼ 1

S

Z S

s

dŝ

ŝ
fi=H1

ðx1; �fÞfj=H2
ðx2; �fÞ

with x1 ¼ ŝ=S and x2 ¼ s=ŝ. Here, S denotes the hadronic
center-of-mass energy squared and s ¼ x1x2S is the sub-
process center-of-mass energy squared. The parameters,
�R and �f, denote the renormalization and factorization

scales, and the functions, fi=H1;2
ðx�;�fÞ (� ¼ 1, 2), are the

parton distribution functions (PDFs) describing the proba-
bility of finding a parton of type i with a momentum
fraction between x� and x� þ dx� in the hadron H1;2.

The top quark mass, mt, is the mass renormalized in the
on-shell scheme.

The partonic subprocess cross sections, �̂ij, can be

decomposed in terms of the dimensionless scaling func-
tions, fmij , where ðijÞ ¼ fðq �qÞ; ðggÞ; ðgqÞ; ðg �qÞg stands for

the four production channels and m ¼ 0, 1, 2 stands for
LO, NLO, and NNLO functions, respectively. The analyti-

cal expressions for f0;1;2ij ð�;QÞ, which contain the explicit

factorization and renormalization scale dependence, can be
directly read from the HATHOR program [16]. Up to NNLO,
�̂ij takes the following form

�̂ ij ¼ 1

m2
t

X2
m¼0

fmijð�;QÞa2þm
s ðQÞ; (2)

where � ¼ 4m2
t =s and asðQÞ ¼ �sðQÞ=�. There is uncer-

tainty in setting the factorization scale, �f, which appears

even in conformal theory, and its determination is a com-
pletely separate issue from the renormalization scale set-
ting. To keep our attention on the renormalization scale, we
implicitly set �f � mt. For the initial value of �R ¼ �init

R ,

we take �init
R ¼ Q, where Q stands for the typical momen-

tum transfer of the process. For example,Q can be taken as
mt, 2mt,

ffiffiffi
s

p
, etc. As the default choice, we take Q ¼ mt.

According to the PMC, we need to identify the

nð1;2Þf -dependent terms associated with renormalization.

Coulomb-type corrections are enhanced by factors of �
and the PMC scales can be relatively soft for heavy quark

velocity, v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

t =s
p ! 0. Thus, the terms which are

proportional to (�=v) or ð�=vÞ2 have a separate PMC scale
and will, thus, be treated separately [17]. More explicitly,
the NLO and NNLO scaling functions can be written as

f1ijð�;QÞ ¼ ½A1ij þ B1ijnf� þD1ij

�
�

v

�
; (3)

f2ijð�;QÞ ¼ ½A2ij þ B2ijnf þ C2ijn
2
f�

þ ½D2ij þ E2ijnf�
�
�

v

�
þ F2ij

�
�

v

�
2
: (4)

The PMC scales can be set order-by-order and the final
result is

m2
t �̂ij ¼ A0ija

2
sðQ�

1Þ þ ½ ~A1ij�a3sðQ��
1 Þ þ ½~~A2ij�a4sðQ��

1 Þ
þ

�
�

v

�
D1ij

�
2�

1� expð�2�Þ
�
a3sðQ�

2Þ; (5)

where � ¼ ~D2ij

D1ij
asðQ�

2Þ þ F2ij

D1ij
ð�vÞasðQ�

2Þ. Here, Q�
1 and Q��

1

are the LO and NLO PMC scales for the non-Coulomb
part, and Q�

2 is the LO PMC scale for the Coulomb part.
The PMC coefficients and PMC scales, together with their
detailed derivations, can be found in Ref. [18].

TABLE I. Dependence of the t�t production cross sections (in unit: pb) at the Tevatron and LHC on the initial renormalization scale
�init

R ¼ Q. Here, mt ¼ 172:9 GeV. The number in parenthesis shows the Monte Carlo uncertainty in the last digit.

PMC scale setting Conventional scale setting

Q ¼ mt=4 Q ¼ mt Q ¼ 10mt Q ¼ 20mt Q ¼ ffiffiffi
s

p
�R � mt=2 �R � mt �R � 2mt

Tevatron (1.96 TeV) 7.620(5) 7.626(3) 7.625(5) 7.624(6) 7.628(5) 7.742(5) 7.489(3) 7.199(5)

LHC (7 TeV) 171.6(1) 171.8(1) 171.7(1) 171.7(1) 171.7(1) 168.8(1) 164.6(1) 157.5(1)

LHC (14 TeV) 941.8(8) 941.3(5) 942.0(8) 941.4(8) 942.2(8) 923.8(7) 907.4(4) 870.9(6)
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When we do numerical calculations, the input parame-
ters are chosen with the following values: for the top quark
mass, we adopt the Particle Data Group value [19]; i.e.,
mt ¼ 172:9� 1:1 GeV. For the PDFs, we adopt the CTEQ
CT10 set with �sðmZÞ ¼ 0:118 [20]. Our results for the t�t
production cross sections are presented in Table I where
the total cross sections which are derived by using the
PMC scale setting and the conventional scale setting are
presented.

It is found that after PMC scale setting, the resulting
total cross sections for five disparate initial scales are equal

to each other within part per mill accuracy. (There is some
small residual initial scale dependence in the PMC scales
because of unknown higher-order f�ig terms.) For com-
parison, we also present the results with conventional scale
setting in Table I. For �R 2 ½mt=2; 2mt�, we obtain the
usual renormalization scale uncertainty ðþ3%

�4% Þ This shows
that the renormalization scale uncertainty is greatly sup-
pressed and essentially eliminated using PMC even at the
NNLO level. This is consistent with renormalization group
invariance: there should be no dependence of the predic-
tion for a physical observable on the choice of the initial
renormalization scale.
The PMC predictions for total cross section �t�t are

sensitive to the top quark mass. We present �t�t as a
function of mt in Fig. 1. After PMC scale setting, the
value of �t�t becomes very close to the central values of
the experimental data [9–12]. By varying mt ¼ 172:9�
1:1 GeV [19], we predict

�Tevatron;1:96 TeV ¼ 7:626þ0:265
�0:257 pb; (6)

�LHC;7 TeV ¼ 171:8þ5:8
�5:6 pb; (7)

�LHC;14 TeV ¼ 941:3þ28:4
�26:5 pb: (8)

We have recently shown that the large discrepancy
between the standard model estimates using conventional
scale setting and the CDF and D0 Collaboration data
[21,22] for the t�t-pair forward-backward asymmetry is
mainly caused by improper setting of renormalization scale
[23]. After PMC scale setting, it is found that the NLO
PMC scale has a dip behavior for the dominant asymmetric
(q �q)-channel; the importance of this channel to the asym-
metry is, thus, increased. Then, after PMC scale setting, the

t�t-pair forward-backward asymmetries, At�t
FB and Ap �p

FB, at
the Tevatron are increased by 42% in comparison with
the previous estimates obtained by using conventional

scale setting. We obtain At�t
FB ’ 12:5%, Ap �p

FB ’ 8:28%
and At�t

FBðMt�t > 450 GeVÞ ’ 35:0% [23]. These predic-
tions have a 1� deviation from the present CDF and D0

σ
σ

FIG. 1 (color online). Total cross section �t�t for the top quark
pair production versus top quark mass.
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FIG. 2 (color online). Comparison of the PMC prediction with the CDF data [21] for the t�t-pair forward-backward asymmetry for the
whole phase space. The left diagram is for At�t

FB in the t�t-rest frame, the middle diagram is for Ap �p
FB in the laboratory frame, and the right

diagram is for At�t
FBðMt�t > 450 GeVÞ. The Hollik and Pagani’s results (HP) [24] using conventional scale setting are presented for a

comparison. The result for D0 data [22] shows a similar behavior.

PRL 109, 042002 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
27 JULY 2012

042002-3



measurements; the large discrepancy of the top quark
forward-backward asymmetry between the standard model
estimate and the data are, thus, greatly reduced. These
large improvements are explicitly shown in Fig. 2, where
the results of Hollik and Pagani [24], which are derived
under conventional scale setting, are presented for
comparison.

Summary.—By using PMC scale setting, one obtains a
unique, scale-fixed, scheme-independent prediction at any
finite order in a systematic way. Since the renormalization
scale and scheme ambiguities are removed, this procedure
improves the precision of tests of the standard model and
enhances the sensitivity to new phenomena. The PMC can
be applied to a wide variety of perturbatively calculable
collider and other processes.

We have applied PMC to study the t�t hadroproduction
cross section�t�t up to NNLO. The resulting LO- and NLO-
terms are conformally invariant and scheme independent,
and the nonconformal contributions in the NNLO terms are
greatly suppressed. The PMC prediction for�t�t agrees well
with the present Tevatron and LHC data. We also verify
that the initial renormalization scale independence of the
PMC prediction is satisfied to high accuracy at the NNLO:
the total cross section remains almost unchanged even
when taking very disparate initial scales �init

R equal to mt,
10mt, 20mt, and

ffiffiffi
s

p
. The optimized PMC scales substan-

tially eliminates the large discrepancy between the stan-
dard model estimation and the Tevatron data for the t�t-pair
forward-backward asymmetry.
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