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We present a calculation of the kaon B parameter BK using lattice QCD. We use improved staggered

valence and sea fermions, the latter generated by the MILC Collaboration with Nf ¼ 2þ 1 light flavors.

To control discretization errors, we use four different lattice spacings ranging down to a � 0:045 fm. The

chiral and continuum extrapolations are done using SU(2) staggered chiral perturbation theory. Our final

result is B̂K ¼ 0:727� 0:004ðstatÞ � 0:038ðsystÞ, where the dominant systematic error is from our use of

truncated (one-loop) matching factors.
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CP violation was first observed in the kaon system in
1964 [1], but only in the last few years has it been possible to
use this classic result to learn about the parameters of the
standard model (SM). CP violation in the SM is due to the
phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix,
and leads toCP violation in kaon mixing—so-called indirect
CP violation—through Feynman diagrams involving virtual
charm and top quarks. Integrating out heavy quarks (c, b,
and t) and theW andZ-bosons, one finds that a prediction for
indirect CP violation requires the calculation of the matrix
element of a local four-fermion operator between a K0 and a
�K0. To calculate this matrix element (which is parametrized
by the kaon B parameter, BK) requires control over the
nonperturbative physics of the strong interactions. The
only known quantitative method to calculate such matrix
elements from first principles is lattice quantum chromody-
namics, and it is only very recently that lattice calculations
have begun to control all sources of error.

In this Letter we present a calculation of BK using
improved staggered fermions. Fully controlled results
using other types of lattice fermions have been obtained
previously, using valence domain-wall quarks with stag-
gered sea quarks [2], using domain-wall valence and sea
fermions [3,4]. and, very recently, using Wilson valence
and sea fermions [5]. We also presented a result using a
partial data set in Ref. [6], which we refer to as SW-1 in the
following. What sets our work apart from that using
valence domain-wall fermions is that we are able to use
smaller values of the lattice spacing, a, thus potentially
providing better control over the continuum limit. We
also have very small statistical errors, such that the final

statistical error in BK is �0:5%. In addition, our use of a
different fermion discretization provides a highly nontri-
vial cross-check of the other results, analogous to the use of
a different experimental technique.
The required matrix element is parametrized by

BKð�;RÞ ¼ hK0jO�S¼2ð�;RÞj �K0i
8f2KM

2
K=3

; (1)

where R is a specific regularization scheme chosen to define
the operator O�S¼2 ¼

P
�½ �s��ð1� �5Þd�½�s��ð1� �5Þd�,

and � is the corresponding renormalization scale. We use
lattice regularization, and then convert to the continuum

MS scheme (using naive dimensional regularization for
the �5) using one-loop matching factors from Ref. [7]. At
the end we convert to the renormalization-scale invariant

quantity B̂K.
We use improved staggered fermions for both valence and

sea quarks. The advantages of staggered fermions are that
they are computationally inexpensive and that they retain a
remnant of chiral symmetry. The latter property implies that
the matrix element in the numerator of Eq. (1) vanishes when
MK ! 0 because of the ‘‘left-left’’ chiral structure ofO�S¼2.
Without chiral symmetry, O�S¼2 mixes with operators with
‘‘left-right’’ structure, whose matrix elements do not vanish
when MK ! 0, and are thus enhanced. For both staggered
and domain-wall fermions, such mixing is not allowed.
Mixing with chirally enhanced operators is allowed for
Wilson fermions, but appears now to be controllable [5].
For the sea quarks, we use the MILC Collaboration’s

publicly available ensembles generated using 2þ 1 flavors
of asqtad staggered fermions [8]. Here ‘‘2þ 1’’ indicates
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degenerate up and down quarks and a heavier, nearly
physical, strange quark. Each staggered lattice flavor de-
scribes four continuum fermions, usually called ‘‘tastes.’’
This unwanted degeneracy is removed by the fourth-root
prescription, and we assume this leads to no problems with
the continuum limit.

For the valence sector we choose hypercubic-smeared
staggered fermions. We prefer these to asqtad fermions
because they are more continuumlike; e.g., the breaking
of taste symmetry is smaller by a factor of �3 [9].
Nevertheless, taste breaking induced by discretization
errors leads to significant complications in the analysis.
This enters both through mass splittings between kaons of
different tastes and by inducing additional operator mixing.
Both these effects, as well as those due to the use of
different types of valence and sea quarks, and to the use
of the fourth-root prescription, can be incorporated into the
chiral effective theory describing staggered fermions—
staggered chiral perturbation theory (SChPT) [6,10–12].
Specifically, we use SU(2) SChPT—in which only the
up and down quarks are treated as light. After fitting to
the forms predicted by SChPT, one can then remove
‘‘by hand’’ the taste-breaking discretization errors.

We use the MILC asqtad lattices listed in Table I for the
present work. The most important changes since our pre-
vious work, SW-1, are the addition of a fourth, finer, lattice
spacing (the ‘‘ultrafine’’ ensemble U1) and the nine- or
tenfold increase in the number of measurements on several
of the ‘‘coarse’’ ensembles (a � 0:12 fm) and also on the
‘‘fine’’ (a � 0:09 fm) ensemble F1.

The sea-quark masses in these ensembles are not physi-
cal. The strange quark is somewhat too heavy, requiring a
small correction. The light quarks are too heavy, requiring
an extrapolation to the physical mass. The lightest sea-
quark pion on the coarse ensembles has mmin

� ðseaÞ �
280 MeV. This will turn out to be light enough for a
controlled extrapolation, because the dependence on sea-
quark masses turns out to be mild.

On each lattice, we create and destroy kaons using two
wall sources, which are separated by Euclidean time �t.
The sources have the property of creating only kaons with
the desired Goldstone taste, �5, and with vanishing spatial
momenta. The discretized version of the operator O�S¼2 is
placed between the two sources, and summed over space;
�t is chosen large enough that there is a plateau region
with minimal contamination from excited states, and small
enough that effects from states propagating ‘‘around the
world’’ in the time direction can be ignored. We obtain BK

by fitting to a constant over the plateau region.
We use 10 different valence quark masses, amV ¼

amnom
s ðn=10Þ for n ¼ 1; 2; . . . ; 10, with the nominal

strange quark masses being 0.05, 0.03, 0.018, and 0.014
for coarse, fine, superfine, and ultrafine lattices, respec-
tively. (For equal bare masses, hypercubic-smeared quarks
have smaller physical masses than asqtad quarks, because
of differing renormalization factors.) We use the lightest
four valence masses for the valence d quark (mx), and the
heaviest three valence masses for the valence s quark (my).

This maintains the relationsmx � my �m
phys
s , as required

for the applicability of SU(2) ChPT.
The four values of amx allow us to extrapolate to the

physical down-quark mass. This extrapolation is much
shorter than that for the sea quarks, both since our valence
quarks are lighter (the lightest �xx pion has a mass �
200 MeV), and because we are extrapolating to mphys

d

rather than ðmphys
u þm

phys
d Þ=2 (so thatM �xx must be extrapo-

lated to 158 MeV, the mass of an unphysical �dd meson).
We fit the dependence on X ¼ M2

�xx (for pseudoscalar taste)
to the next-to-leading order (NLO) form predicted by
SU(2) SChPT. In SW-1 we used uncorrelated fits and did
not include finite-volume corrections. Here we correct
both shortcomings. To obtain satisfactory correlated fits
(with �2=d:o:f: & 1) we need to include higher-order
terms with coefficients constrained by Bayesian priors.
Specifically, we fit BK for fixed my to

c1F0ðXÞ þ c2X þ c3X
2 þ c4X

2ln2Xþ c5X
2 lnX þ c6X

3;

(2)

where F0ðXÞ contains the leading order constant term as
well as the chiral logarithms. The latter include taste-
breaking effects and finite-volume dependence (see SW-1
and Ref. [13] for the explicit form). The terms multiplied
by c3�5 are the generic NNLO forms in the continuum.
Since these are not known analytically, we include them
with coefficients whose magnitude is constrained by
Bayesian priors to be of the size expected by naive dimen-
sional analysis. We also include a single analytic NNNLO
term (with coefficient c6).
Examples of the resulting fits are shown in Fig. 1. With

the fit parameters in hand, we can extrapolate mx and msea
d

to m
phys
d , msea

u to m
phys
u , and the volume to infinity; and

remove taste-breaking discretization errors. We note that

TABLE I. MILC ensembles used to calculate BK [8]. a is the
nominal lattice spacing, m‘ (ms) the light (strange) sea-quark
mass, ‘‘ens’’ the number of gauge configurations and ‘‘meas’’ the
number of measurements per configuration. ‘‘Status’’ indicates
changes since SW-1: ‘‘old’’ is unchanged, ‘‘new’’ is a new
ensemble, and ‘‘update’’ indicates more measurements.

a (fm) am‘=ams Size ID ens�meas Status

0.12 0:03=0:05 203 � 64 C1 564� 9 update

0.12 0:02=0:05 203 � 64 C2 486� 9 update

0.12 0:01=0:05 203 � 64 C3 671� 9 old

0.12 0:01=0:05 283 � 64 C3-2 275� 8 old

0.12 0:007=0:05 203 � 64 C4 651� 10 old

0.12 0:005=0:05 243 � 64 C5 509� 9 update

0.09 0:0062=0:031 283 � 96 F1 995� 9 update

0.06 0:0036=0:018 483 � 144 S1 744� 2 old

0.045 0:0028=0:014 643 � 192 U1 705� 1 new
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finite volume shifts are small for our pion masses, even
though our lightest pions have m�L � 3 (with L the box
size). We have checked this directly by comparing results
on ensembles C3 and C3-2 [13].

We estimate the systematic error of our X fits by dou-
bling the allowed widths of the Bayesian priors, and by
dropping the NNNLO term. The former gives the larger
effect, and we take the largest size of this shift (0.33%, on
the S1 ensemble) as the error estimate.

The three values of amy allow us to extrapolate to the

physical strange quark mass. We find that a linear fit to my

represents the data very well, and use this for our central
values. We use a quadratic ‘‘Y fit’’ to estimate a fitting
systematic error.

At this stage the values of BK on different ensembles
differ primarily because of taste-conserving discretization
and matching errors. To remove the main part of these errors
we use ensembles C3, F1, S1, and U1, which have very
similar sea-quarkmasses. In Fig. 2, we show the dependence
on a2, and present the results of several methods of extrapo-
lation to a ¼ 0. We note that the simple linear dependence
observed in SW-1 (for the largest three lattice spacings) has
been resolved by improved errors, and by the addition of
the U1 point, into a less smooth dependence. On theoretical
grounds [12], the expected dependence is

d1 þ d2ða�Þ2 þ d3ða�Þ2�s þ d4�
2
s þ d5ða�Þ4 þ � � � ;

(3)

where �s ¼ �MS
s ð1=aÞ. We fit to this 5-parameter form

applying Bayesian constraints on d2�5—the expected values
are taken to be 0, while the standard deviations are set to 2,
having chosen� ¼ 300 MeV. The fit is shown by the [blue]
dotted curve, and gives the extrapolated value shown by the
diamond. The fit, however, is very poor, with�2=d:o:f:¼4:5.
This problem is not resolved by adding terms of one higher
order. Thus we drop the coarse lattice from the fits, and then

find good fits to a constant (solid [red] line and cross in
Fig. 2), a linear dependence on a2 (not shown) and to the
constrained formofEq. (3) (dashed [brown] line and square).
We take the constant fit for the central value, and the differ-
ence between it and the constrained fit as the systematic error
in the continuum extrapolation. For more discussion of fits
see Ref. [14].
After the preceding analysis, BK can still have a residual

dependence on the sea-quark masses. In SU(2) SChPT, the
dependence on m‘ is linear at NLO. We have investigated
the m‘ dependence in detail on the coarse lattices, with
results shown in Fig. 3. We plot versus LP, the squared
mass of the sea-quark pion, and find a linear behavior with
a small slope � �1=ð2:9 GeVÞ2. In SW-1, with errors
3 times larger, we could not uncover this dependence.
Using this slope, we find that BK is increased by 1.5%
when changing LP from its value on ensemble C3 to its
physical value. Since this is a small effect, and since we
only have results for the slope on the coarse ensembles,
we do not adjust the central value of BK, but instead quote
the 1.5% as a systematic error.
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FIG. 1 (color online). BKðNDR; 1=aGeVÞ vs X on the U1 and
F1 ensembles (where NDR is naive dimensional regularization).
The (red) diamond ([blue] cross) shows the result on the U1 (F1)
ensemble, after extrapolation and removal of taste-breaking
artifacts as described in the text.
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FIG. 2 (color online). Continuum extrapolation of
BKðNDR; 2 GeVÞ. The fits are described in the text.
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FIG. 3 (color online). BKðNDR; 2 GeVÞ vs LP on the coarse
ensembles. The solid line shows a linear fit, with the extrapolation
to physical pion mass given by the diamond.
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We also need to correct for the mismatch between ams

and amphys
s . Here we follow SW-1, and assume the SU(3)

ChPT form of the ms dependence. Then we find that, on
C3, the correction from using a sea-quark mass which is
40% too large is 1.3%. This approach is more conservative
than that used in SW-1. Again, we do not adjust the central
value, but quote the shift as a systematic error.

We collect all our errors in Table II. The statistical error
has been reduced by a factor of 3 compared to SW-1, and
now is smaller than many other sources of error. The
dominant error comes from our use of one-loop matching.
We estimate this as �BK=BK ¼ �2

s , with �s evaluated at
the scale of our finest lattice. It is thus reduced from the
5.5% estimate of SW-1 by the addition of the U1 ensemble.
The discretization error is nearly unchanged from SW-1,
despite the addition of the ultrafine lattices, because of the
increased uncertainty in the continuum extrapolation. The
only errors not discussed above are the r1 and f� errors,
which are estimated essentially as discussed in SW-1.

Adding systematic errors in quadrature, we find

B̂ K ¼ 0:727� 0:004ðstatÞ � 0:038ðsystÞ:
The central value is almost unchanged from SW-1, but the
significant improvements we have made have both reduced
the error and solidified our error estimates. Our result is
consistent with other Nf ¼ 2þ 1 results [2,4,5], as shown

in Fig. 4. The largest difference is that our result lies 1:4	
below that of Ref. [5] (the most accurate result). This
consistency with results obtained using different fermion
discretizations is our most significant conclusion. It is
important, however, to further reduce errors in all lattice
calculations to check that this consistency holds up. Work
is in progress to reduce our dominant systematic using
two-loop matching and nonperturbative renormalization.

Lattice results for BK now allow the venerable experi-
mental result for 
K to be used to constrain the parameters
of the SM. Indeed, we have now reached the situation that
the accuracy of BK calculations is such that errors from
other sources dominate—in particular those from Vcb and
the Wilson coefficient �cc (see, e.g., Ref. [15]).
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TABLE II. Error budget for BK using SU(2) SChPT fitting.

Cause Error (%) Memo

Statistics 0.6 see text

Matching factor 4.4 �Bð2Þ
K (U1)

Discretization 1.9 diff. of constant and constrained fits

X fits 0.33 varying Bayesian priors (S1)

Y fits 0.07 diff. of linear and quadratic (C3)

aml extrap. 1.5 diff. of (C3) and linear extrap.

ams extrap. 1.3 diff. of (C3) and linear extrap.

Finite volume 0.5 diff. of V ¼ 1 fit and FV fit

r1 0.14 r1 error propagation (C3)

f� 0.4 132 MeV vs 124.4 MeV 0.6  0.7  0.8  0.9  1  1.1
BK(RGI)
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Ref.  [5]
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FIG. 4 (color online). Comparison of our result for B̂K ¼
BKðRGIÞ, where RGI indicates renormalization group invari-
ance, with other results obtained with Nf ¼ 2þ 1 flavors.
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